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OBJECTIVES
Broader Goals: Model training of deep neural net-
works (DNNs) as optimal control problem.

1. simplify design of DNNs
(≈ discretize a PDE)

2. analyze stablity and generalization
(≈ vanishing/exploding gradients)

3. develop variational framework
(; multilevel and multiscale learning)

4. design reversible dynamics
(; memory-free learning)

Current focus:

1. research: model order reduction, efficient opti-
mization, stable dynamics, time-integrators [1]

2. community: free MATLAB/Julia software
3. accessibility: building models in pyTorch
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NUMERICAL RESULTS
We train a simple model of a convolutional opening
layer, three blocks containing the RK scheme doubling
the channels each pass, and one fully connected layer.

The dynamic unit is the only portion that we vary.

Our learning strategy uses 120 epochs of SGD with mo-
mentum with initial learning rate of 0.1 which reduces
by a factor of 10 after epochs 60, 80, 100.
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NOISY STOCHASTIC SHIFTS
Goal: Analyze the network when the time-stepping is
varied every epoch

Fixing the control time steps tθ = [0, 1, 2, 3, 4] and state
time steps tY = [0, 1, 2, 3, 4] or [0, 2, 4],
at every epoch, draw noise ε from a uniform distribu-
tion.

This varies the interpolation of the control weights to
obtain different state weights.

Results:

For a Double Sym Layer in the dynamic unit
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FUTURE DIRECTIONS
• Loss Landscape Analysis
• Adversarial Vulnerability Analysis
• Adaptive Time-Stepping
• Adams-Bashforth Methods

DNNS MEET OPTIMAL CONTROL
Goal: Find a function f : Rn × Rp → Rm and its pa-
rameter θ ∈ Rp such that f(yk, θ) ≈ ck for training
data y1, . . . ,ys ∈ Rn and labels c1, . . . , cs ∈ Rm.

Model yNk = f(yk, θ) as output of Residual Neural
Network (ResNN) with N layers. Let y0

k = yk and

yi+1
k = yik + hg(yik, θ

i), ∀i = 0, . . . , N − 1.

(g transforms features, e.g., g(y, θ) = tanh(K(θ)y))
Note that ResNN is a forward Euler discretization [2]
of the initial value problem (t ∈ [0, T ])

∂tyk(t, θ) = g(yk(t, θ), θ(t)), yk(0, θ) = yk

Learning: Find θ and weights of classifier by solving

min
θ,W

1

s

s∑
k=1

loss(yk(T, θ)W, ck) + regularizer(θ,W).

learning ≈mass transport, trajectory planning

MOTIVATION
Since the community recognizes the effectiveness of
Resnets and their skip connections (shown to be equiv-
alent to Forward Euler), wouldn’t higher-order Runge-
Kutta schemes assist in training?

RUNGE-KUTTA SCHEMES
Goal: Improve training by maintaining few parame-
ters and controlling conditioning

Recall the Fourth-Order Runge-Kutta
Defining the length of the j-th time interval by

hj = tj+1 − tj ,

the update scheme reads

uj+1 = uj +
hj
6

(
f(θ(tj), z1) + 2f(θ(tj+1/2), z2)

+2f(θ(tj+1/2), z3) + f(θj+1, z4)
)

where f is the primary layer in the dynamic unit as a
function of the controls θ(tk) and intermediate states
zi that are computed as follows

z1 = uj

z2 = uj +
hj
2
f(θ(tj),uj)

z3 = uj +
hj
2
f(θ(tj+1/2), z1)

z4 = uj + hjf(θ(tj+1/2), z2)

From this RK4 scheme for f , we build a dynamic unit
as part of a simple model to compare different time-
steppings for when f is a layer of type:

Double / ResNN: σ2 ◦ N2 ◦Kθ2 ◦ σ1 ◦ N1 ◦Kθ1(Y )

Preactivated Double: N2 ◦Kθ2 ◦ σ2 ◦ N1 ◦Kθ1 ◦ σ1(Y )

Double Sym / Parabolic [3]: −K>
θ ◦ σ ◦ N ◦Kθ(Y )

for activation functions σ, normalizations N , and con-
volution operators K defined by weights θ
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TEAM

• Eldad Haber (UBC, Vancouver)
• Eran Treister (Ben Gurion, Israel)
• Simion Novikov (Ben Gurion, Israel)SOFTWARE

Github: • Meganet.m: academic and teaching tool
• Meganet.jl: high-performance dis-

tributed computing
• PyTorch implementations in the works


