
APPLYING HIGHER-ORDER RUNGE-KUTTA METHODS TO NEURAL NETWORKS

DEREK ONKEN AND LARS RUTHOTTO DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, EMORY UNIVERSITY

OBJECTIVES
Broader Goals: Model training of deep neural net-
works (DNNs) as optimal control problem.

1. simplify design of DNNs
(≈ discretize a PDE)

2. analyze stablity and generalization
(≈ vanishing/exploding gradients)

3. develop variational framework
(; multilevel and multiscale learning)

4. design reversible dynamics
(; memory-free learning)

Current focus:

1. research: model order reduction, efficient opti-
mization, stable dynamics, time-integrators [1]

2. community: free MATLAB/Julia software
3. accessibility: building models in pyTorch

FUNDING
Supported by the National Science Foundation
awards DMS 1522599 and CAREER DMS 1751636
and by NVIDIA Corporation.

MODEL

Opening Layer

! ∘ # ∘ $%&'3 )

Dynamic Unit

Runge-Kutta scheme

Connecting Layer

! ∘ # ∘ $%&'1 )

Dense Layer

+ )

P
o
o
l

Dog

Loop Back Twice

NUMERICAL RESULTS
We train a simple model of a convolutional opening
layer, three blocks containing the RK scheme doubling
the channels each pass, and one fully connected layer.

The dynamic unit is the only portion that we vary.

Our learning strategy uses 120 epochs of SGD with mo-
mentum with initial learning rate of 0.1 which reduces
by a factor of 10 after epochs 60, 80, 100.

0 500 1000 1500 2000 2500 3000
Time (s)

10

20

30

40

50

60

70

80

V
al

id
at

io
n 

A
cc

ur
ac

y

STL-10 Double Sym Layer

RK4 [2]
RK4 [1]
RK1 [1]
RK1 [.5]
RK1 [.25]
RK1 [.125]

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Time (s)

30

40

50

60

70

80

90

100

V
al

id
at

io
n 

A
cc

ur
ac

y

CIFAR-10 Double Sym Layer

RK4 [2]
RK4 [1]
RK1 [1]
RK1 [.5]
RK1 [.25]
RK1 [.125]

NOISY STOCHASTIC SHIFTS
Goal: Analyze the network when the time-stepping is
varied every epoch

Fixing the control time steps tθ = [0, 1, 2, 3, 4] and state
time steps tY = [0, 1, 2, 3, 4] or [0, 2, 4],
at every epoch, draw noise ε from a uniform distribu-
tion.

This varies the interpolation of the control weights to
obtain different state weights.

Results:

For a Double Sym Layer in the dynamic unit

0 20 40 60 80 100 120
Epoch

10

20

30

40

50

60

70

80

90

100

V
al

di
at

io
n 

A
cc

ur
ac

y

CIFAR-10 Noisy Double Sym Layer tY=[0,1,2,3,4]

no noise
U[-.1,.1]
U[-.2,.2]
U[-.3,.3]
U[-.4,.4]
U[-.5,.5]

0 20 40 60 80 100 120
Epoch

10

20

30

40

50

60

70

80

90

100

V
al

di
at

io
n 

A
cc

ur
ac

y

CIFAR-10 Noisy Double Sym Layer tY=[0,2,4]

no noise
U[-.1,.1]
U[-.2,.2]
U[-.3,.3]
U[-.4,.4]
U[-.5,.5]

FUTURE DIRECTIONS
• Loss Landscape Analysis
• Adversarial Vulnerability Analysis
• Adaptive Time-Stepping
• Adams-Bashforth Methods

DNNS MEET OPTIMAL CONTROL
Goal: Find a function f : Rn × Rp → Rm and its pa-
rameter θ ∈ Rp such that f(yk, θ) ≈ ck for training
data y1, . . . ,ys ∈ Rn and labels c1, . . . , cs ∈ Rm.

Model yNk = f(yk, θ) as output of Residual Neural
Network (ResNN) with N layers. Let y0

k = yk and

yi+1
k = yik + hg(yik, θ

i), ∀i = 0, . . . , N − 1.

(g transforms features, e.g., g(y, θ) = tanh(K(θ)y))
Note that ResNN is a forward Euler discretization [2]
of the initial value problem (t ∈ [0, T ])

∂tyk(t, θ) = g(yk(t, θ), θ(t)), yk(0, θ) = yk

Learning: Find θ and weights of classifier by solving

min
θ,W

1

s

s∑
k=1

loss(yk(T, θ)W, ck) + regularizer(θ,W).

learning ≈mass transport, trajectory planning

MOTIVATION
Since the community recognizes the effectiveness of
Resnets and their skip connections (shown to be equiv-
alent to Forward Euler), wouldn’t higher-order Runge-
Kutta schemes assist in training?

RUNGE-KUTTA SCHEMES
Goal: Improve training by maintaining few parame-
ters and controlling conditioning

Recall the Fourth-Order Runge-Kutta
Defining the length of the j-th time interval by

hj = tj+1 − tj ,

the update scheme reads

uj+1 = uj +
hj
6

(
f(θ(tj), z1) + 2f(θ(tj+1/2), z2)

+2f(θ(tj+1/2), z3) + f(θj+1, z4)
)

where f is the primary layer in the dynamic unit as a
function of the controls θ(tk) and intermediate states
zi that are computed as follows

z1 = uj

z2 = uj +
hj
2
f(θ(tj),uj)

z3 = uj +
hj
2
f(θ(tj+1/2), z1)

z4 = uj + hjf(θ(tj+1/2), z2)

From this RK4 scheme for f , we build a dynamic unit
as part of a simple model to compare different time-
steppings for when f is a layer of type:

Double / ResNN: σ2 ◦ N2 ◦Kθ2 ◦ σ1 ◦ N1 ◦Kθ1(Y )

Preactivated Double: N2 ◦Kθ2 ◦ σ2 ◦ N1 ◦Kθ1 ◦ σ1(Y )

Double Sym / Parabolic [3]: −K>
θ ◦ σ ◦ N ◦Kθ(Y )

for activation functions σ, normalizations N , and con-
volution operators K defined by weights θ

REFERENCES

[1] Chen et al. Neural Ordinary Differential Equations.. NeurIPS,
2018.

[2] E Haber, L Ruthotto Stable Architectures for Deep Neural Net-
works. Inverse Problems, 2017.

[3] L Ruthotto, E Haber Deep Neural Networks Motivated by Par-
tial Differential Equations. arXiv, 2018.

TEAM

• Eldad Haber (UBC, Vancouver)
• Eran Treister (Ben Gurion, Israel)
• Simion Novikov (Ben Gurion, Israel)SOFTWARE

Github: • Meganet.m: academic and teaching tool
• Meganet.jl: high-performance dis-

tributed computing
• PyTorch implementations in the works


