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Input LDCT

e begins localized in the lungs and spreads 300 slices, 512 x 512 each

Inner workings of the model:

7 Model N

5-year survival rates:
— 19% (all stages)
— 56% (still localized to the lungs)

e Segmenter pulls out smaller
cubes with the most likely can- RESULTS
cerous nodules (for scalability)

e PDE-based Classifier

1 yes cancerous
0 not cancerous

e can be caught and treated early, reducing mortality

Use pre-trained segmenter [7]
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Requires 1 week to train on a GPU with 16GB RAM
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Annual screening is recommended for the non-

symptomatic high-risk population (smokers with >15 OPTIMAL CONTROL IN NNS
pack-years; age 55-74). Radiologists read these scans

cube for the patient
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where / : RP x R™ — R" is a neural network.
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The segmenter provides
region of interest cubes
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A forward Euler discretization [4] of Eq. (1) is the N-

Current process can be expensive for providers, and || layer ResNet
patients experience delays and high costs.

Commercial Population [3]

Each region has a cancer
probability p;

yj'_|_1:yj'—|-h€(9j,yj), wherej:O,l,...,N—l,

Show those to the radiologist

with step size h = T/N. Borrowing from optimal con- Fixed-width portions of ResNet = a Dynamic Block

trol, the 6, are control layers and the y; are state layers.

Of adult patients diagnosed with non-small cell lung cancer (2007-2011)
» ~94% experienced a delay of 5-6 months !
* Mean per patient per month in total health care costs was
$2,407 + $3,364

___________________________________________________________________________________________________

Each block contains:
e continuous ODE like Eq. (1)
o ODE solver scheme (e.g., Runge-Kutta 4)

Training: Tune 6 and linear layer W by solving

FUTURE DIRECTIONS

discretization for the solver .
° Scale current method to all 15, 000 patient scans

False positives render many of these costs wasteful. .
P Y loss(f(0,yE)W, c®) + regularizer(6, W) e neural network layer ¢

Apply PDE interpretation to the segmenter
Predict 5 classes (Lung-RADS)

Add a recurrent component to compare against
past scans (nodule growth)

= Reduction in false positives at initial screening
saves patients and providers time and money.

For /, we experiment with:

e Double Layer: o o Ny o Kg, 001 oNio Ko, (y)
e Double Symmetric Layer [6]: —K, o oo N o Kg(y)
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PyTorch implementation for CIFAR-10 and STL-10
available on Emory’s Machine Learning and Inverse
Problems Github repository:

github.com/EmoryMLIP/DynamicBlocks
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Lung-specific hyperparameters and data unavailable.




