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MOTIVATION
Lung cancer:

• is responsible for the most deaths of all cancers

• begins localized in the lungs and spreads

5-year survival rates:
– 19% (all stages)
– 56% (still localized to the lungs)

• can be caught and treated early, reducing mortality
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LUNG CANCER IN THE U.S.

Incidence By Source [1]
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basic statistics

In 2018,
• 541K people living with lung 

cancer (prevalence)
• 234K new cases (incidence)

2 / 30 Annual screening is recommended for the non-
symptomatic high-risk population (smokers with >15
pack-years; age 55-74). Radiologists read these scans
to determine cancer diagnosis.
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LDCT PERFORMANCE
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Data from baseline (T0) of NLST LDCT group.
NLST Research Team. (2013). Results of initial low-dose computed tomographic screening for lung cancer. NEJM.

• 6,911 false positives even with practiced radiologists and good follow-up 

participation by patients

• False positives lead to wasteful follow-up imaging and biopsy 

Sensitivity =     !"
!"#$% = 93.8%

Specificity =     !%
!%#$" = 73.4%

Positive Predictive Value (PPV) =     !"
!"#$" = 3.8%

Negative Predictive Value (NPV) =     !%
!%#$% = 99.9%

F.-score     = /!"
/!"#$%#$" = 7.2%

NLST findings
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Data from LDCT group
baseline (T0) of Nat’l
Lung Cancer Screening
Trial (NLST) [2]

Current process can be expensive for providers, and
patients experience delays and high costs.
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PATIENT JOURNEY

1Gildea, et al. (2017). A retrospective analysis of delays 
in the diagnosis of lung cancer and associated costs.

delayed diagnoses + costs

First diagnostic test Definitive diagnosis

Ranges from one to six months

Commercial Population [3]

Of adult patients diagnosed with non-small cell lung cancer (2007-2011)
• ~94% experienced a delay of 5-6 months
• Mean per patient per month in total health care costs was                                

$2,407 ± $3,364

8 / 30 False positives render many of these costs wasteful.

⇒ Reduction in false positives at initial screening
saves patients and providers time and money.
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PROBLEM & APPROACH
Develop a model that classifies a 3-D low-dose computed tomography (LDCT) scan as cancerous or non-
cancerous. Performance goal: fewer false positives than practicing radiologists while matching sensitivity.
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Input LDCT
Output

Inner workings of the model:

• Segmenter pulls out smaller
cubes with the most likely can-
cerous nodules (for scalability)

• PDE-based Classifier

– Predict cancer likelihood for
each cube

– Use from the max likelihood
cube for the patient

OPTIMAL CONTROL IN NNS
Goal: Find a function f : Rp × Rn → Rm and param-
eters θ ∈ Rp such that f(θ,y0) ≈ c for every training
input y0 ∈ Rn and its label c ∈ Rm.

We make this continuous, viewing weights θ and fea-
tures y as functions of time t ∈ [0, T ].

The neural network f(θ,y0) = y(T ) performs a non-
linear transformation of inputs y0 satisfying the ordi-
nary differential equation (ODE),

∂ty(t) = `(θ(t),y(t)) , for t ∈ (0, T ]

y(0) = y0,
(1)

where ` : Rp ×Rn → Rn is a neural network.

A forward Euler discretization [4] of Eq. (1) is the N -
layer ResNet

yj+1 = yj + h ` (θj ,yj) , where j = 0, 1, . . . , N−1,

with step size h = T/N . Borrowing from optimal con-
trol, the θj are control layers and the yj are state layers.

Training: Tune θ and linear layer W by solving

min
θ,W

1

s

s∑
k=1

loss(f(θ,yk0)W, ck) + regularizer(θ,W)

across all s training inputs.

DECOUPLING WEIGHTS & LAYERS
Goal: Improve training by maintaining few parame-
ters but with many layers

We develop a generalized ResNet for the classifier:
Resnet-14 [5] Our Framework
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Fixed-width portions of ResNet = a Dynamic Block
Each block contains:
• continuous ODE like Eq. (1)
• ODE solver scheme (e.g., Runge-Kutta 4)
• discretization for the solver
• neural network layer `

For `, we experiment with:

• Double Layer: σ2 ◦ N2 ◦Kθ2
◦ σ1 ◦ N1 ◦Kθ1

(y)

• Double Symmetric Layer [6]: −K>
θ ◦ σ ◦ N ◦Kθ(y)

for activation functions σ, normalizations N , and con-
volution operators K defined by weights θ
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RESULTS
• Use pre-trained segmenter [7]
• Classifier uses Double Symmetric Layer
• Minimize Focal Loss
• Trained on a subset of 280 patient scans
• Requires 1 week to train on a GPU with 16GB RAM
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Radiologists
(NLST patients)

Google AI [8]
(NLST patients)

Training Set
(NLST patients)

Validation Set
(NLST patients)

Actual
True

Actual 
False

Actual
True

Actual 
False

Actual
True

Actual 
False

Actual
True

Actual 
False

Predicted True 270 6,911 82 1,260 6 13 2 10

Predicted False 18 19,043 4 5,370 1 260 0 133

% cancerous (actual) 1.1% 1.3% 2.5% 1.4%
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Radiologists Google AI [1] Metric Training Validation

0.94 0.95 Sensitivity 0.86 1.00

0.04 0.06 PPV 0.32 0.17

0.07 0.11 !"-score 0.46 0.29

0.73 0.81 Specificity 0.95 0.93
0.99 0.99 NPV 0.99 1.00
0.74 0.81 Accuracy 0.95 0.93

Ours

Good results (but expensive) on small subset
Need to increase training data and class imbalance

IMPLEMENTATION IN PRACTICE
Goal: Provide physicians some interpretation of the
model’s output
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INTERPRETABILITY

Each region has a cancer
probability !"

potential utilization by physicians

The segmenter provides 
region of interest cubes

Show those to the radiologist
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FUTURE DIRECTIONS
• Scale current method to all 15, 000 patient scans
• Apply PDE interpretation to the segmenter
• Predict 5 classes (Lung-RADS)
• Add a recurrent component to compare against

past scans (nodule growth)

SOFTWARE
PyTorch implementation for CIFAR-10 and STL-10
available on Emory’s Machine Learning and Inverse
Problems Github repository:

github.com/EmoryMLIP/DynamicBlocks

Lung-specific hyperparameters and data unavailable.


