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Overview

Continuous ResNet and Neural ODEs
I Discrete neural networks viewed in continuous framework

Continuous Normalizing Flows (CNFs)
I Discrete normalizing flows similarly moved to the continuous framework

Discretize-Optimize vs Optimize-Discretize
I Comparing approaches in solving CNFs

OT-Flow
I Incorporating optimal transport with Discretize-Optimize for fast and

accurate CNFs

Motivation: Existing CNFs approaches are prohibitively slow and
expensive.

DO and L Ruthotto
Discretize-Optimize vs. Optimize-Discretize
for Time-Series Regression and CNFs
arXiv:2005.13420, 2020.

DO, S Wu Fung, X Li, L Ruthotto
OT-Flow: Fast and Accurate CNFs
via OT
arXiv:2006.00104, 2020.
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Neural ODE

A neural ODE is an ordinary differential equation (ODE) with neural
network components.

For input x ∈ Rd, neural network f : Rd → Rd models the solution to
∂tz(x, t) = v

(
z(x, t), t;θ

)
, z(x, 0) = x (1)

where

time t ∈ [0, T ]

v : Rd × [0, T ]→ Rd is a neural network layer with parameters θ
z(x, t) are the features for initial x at time t
f(x) = z(x, T )

Intro Neural ODEs CNF DO vs OD OT-Flow Jun 25, 2020 4 / 29



Background

Historically

Residual Neural Networks (ResNets)1 perform well
on image classification and more.

ResNets are merely Forward Euler of some
Continuous ResNet (1).2,3
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1He et al. “Deep residual learning for image recognition”. 2016.
2E. “A Proposal on Machine Learning via Dynamical Systems”. 2017.
3Haber and Ruthotto. “Stable Architectures for Deep Neural Networks”. 2017.
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Background (cont.)

Neural Ordinary Differential Equations

Ricky T. Q. Chen*, Yulia Rubanova*, Jesse Bettencourt*, David Duvenaud
University of Toronto, Vector Institute

Toronto, Canada
{rtqichen, rubanova, jessebett, duvenaud}@cs.toronto.edu

Abstract

We introduce a new family of deep neural network models. Instead of specifying a
discrete sequence of hidden layers, we parameterize the derivative of the hidden
state using a neural network. The output of the network is computed using a black-
box differential equation solver. These continuous-depth models have constant
memory cost, adapt their evaluation strategy to each input, and can explicitly trade
numerical precision for speed. We demonstrate these properties in continuous-depth
residual networks and continuous-time latent variable models. We also construct
continuous normalizing flows, a generative model that can train by maximum
likelihood, without partitioning or ordering the data dimensions. For training, we
show how to scalably backpropagate through any ODE solver, without access to its
internal operations. This allows end-to-end training of ODEs within larger models.

1 Introduction
Residual Network ODE Network

Figure 1: Left: A Residual network defines a
discrete sequence of finite transformations.
Right: A ODE network defines a vector
field, which continuously transforms the state.
Both: Circles represent evaluation locations.

Models such as residual networks, recurrent neural
network decoders, and normalizing flows build com-
plicated transformations by composing a sequence of
transformations to a hidden state:

ht+1 = ht + f(ht, ✓t) (1)

where t 2 {0 . . . T} and ht 2 RD. These iterative
updates can be seen as an Euler discretization of a
continuous transformation (Lu et al., 2017; Haber
and Ruthotto, 2017; Ruthotto and Haber, 2018).

What happens as we add more layers and take smaller
steps? In the limit, we parameterize the continuous
dynamics of hidden units using an ordinary differen-
tial equation (ODE) specified by a neural network:

dh(t)

dt
= f(h(t), t, ✓) (2)

Starting from the input layer h(0), we can define the output layer h(T ) to be the solution to this
ODE initial value problem at some time T . This value can be computed by a black-box differential
equation solver, which evaluates the hidden unit dynamics f wherever necessary to determine the
solution with the desired accuracy. Figure 1 contrasts these two approaches.

Defining and evaluating models using ODE solvers has several benefits:

Memory efficiency In Section 2, we show how to compute gradients of a scalar-valued loss with
respect to all inputs of any ODE solver, without backpropagating through the operations of the solver.
Not storing any intermediate quantities of the forward pass allows us to train our models with nearly
constant memory cost as a function of depth, a major bottleneck of training deep models.

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.
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Neural ODE4

Popularized

Incorporate a black-box solver and coin the term neural ODE.4

Applied to normalizing flows.5

4Chen et al. “Neural Ordinary Differential Equations”. 2018.
5Grathwohl et al. “FFJORD: Free-form continuous dynamics for scalable reversible

generative models”. 2019.
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Discrete Normalizing Flows

A normalizing flow6,7 is an invertible mapping f : Rd → Rd between an
arbitrary probability distribution and a standard normal distribution whose
densities we denote by ρ0 and ρ1, respectively.

ρ0 ρ1
f

f−1

By the change of variables formula, the flow satisfies
log ρ0(x) = log ρ1(f(x)) + log |det∇f(x) | for all x ∈ Rd. (2)

6Rezende and Mohamed. “Variational Inference with Normalizing Flows”. 2015.
7Papamakarios et al. “Normalizing Flows for Probabilistic Modeling and Inference”.

2019.
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Gaussian Mixture Toy Example

Data Estimate Generation
x ρ0 f−1(y)
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Continuous Normalizing Flows (CNFs)
Replace the log-det with a trace

Issue:
log-determinants cost O(d3) FLOPS in general.

Solutions:
Use specific neural network architectures for v so the log-det
computation is manageable.
Replace the log-det with a trace computation.

Using the neural ODE f (1) and Jacobi’s formula8, we can rewrite (2) as

`(x, T ) := log ρ0(x)− log ρ1(f(x)) =

∫ T

0
tr
(
∇v(z(x, t), t;θ)

)
dt. (3)

8Chen et al. 2018.
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CNF Optimization Problem

For expected negative log-likelihood 9,10

C(x, T ) :=
1

2
‖z(x, T )‖2 − `(x, T ) +

d

2
log(2π),

we optimize
min
θ

Eρ0(x) C(x, T )

where for a given θ, the trajectory z satisfies the CNF 11

∂t

[
z(x, t)
`(x, t)

]
=

[
v
(
z(x, t), t;θ

)
tr
(
∇v(z(x, t), t;θ)

) ] ,[
z(x, 0)
`(x, 0)

]
=

[
x
0

]
.

In optimal control, z is the state and θ is the control.

9Rezende and Mohamed. 2015.
10Papamakarios et al. 2019.
11Grathwohl et al. 2019.
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Solving ODE-constrained Optimization Problems

Two Predominant Approaches:
Discretize-Optimize (DO)

I Discretize the ODE, then optimize on that discretization.
I Typical machine learning approach: set up architecture with N layers,

the optimize on that discretization (propagate forward, calculate loss,
backpropagate)

I ANODE12

Optimize-Discretize (OD)
I Optimize in the continuous space, then discretize.
I Use the Karush-Kuhn-Tucker (KKT) conditions or the adjoint

equations to optimize, then choose a discretization.
I Neural ODEs paper13 and FFJORD14

12Gholaminejad, Keutzer, and Biros. “ANODE: Unconditionally Accurate
Memory-Efficient Gradients for Neural ODEs”. 2019.

13Chen et al. 2018.
14Grathwohl et al. 2019.
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Solving ODE-constrained Optimization Problems

Popular methods use Optimize-Discretize.
Adaptive solver dopri5 for the forward propagation
Adjoint-based backpropagation recomputes the intermediate gradients
Drawback: inaccurate gradients when the adjoint equation is not
solved well enough.15,16

We choose Discretize-Optimize.
Same discretization for the forward and backpropagation.

I Use automatic differentiation (AD) for the backpropagation.
I The gradients are accurate.

We use Runge-Kutta 4 with a fixed step size.
Drawback: have to tune a sufficiently small step size for the solver

15Li et al. “Maximum principle based algorithms for deep learning”. 2017.
16Gholaminejad, Keutzer, and Biros. 2019.
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Results

FFJORD DO
0

50

100

150

200

Training Time (hr)
POWER,       d=6
GAS,            d=8
HEPMASS,    d=21
MINIBOONE,d=43
BSDS300,    d=63

For all five data sets, DO and FFJORD17

(OD) achieve similar results with different
training time.

DO has an average speed-up of 6.4x
even with slower training on HEPMASS.

Reasons
Fewer function evaluations (RK4 instead
of dopri5).
Intermediate gradients are stored (with
AD) rather than recomputed.
DO has more accurate gradients.

DO and L Ruthotto
Discretize-Optimize vs. Optimize-Discretize for
Time-Series Regression and CNFs
arXiv:2005.13420, 2020.

17Grathwohl et al. 2019.
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Can we solve even faster?

∂t

[
z(x, t)
`(x, t)

]
=

[
v
(
z(x, t), t;θ

)
tr
(
∇v(z(x, t), t;θ)

) ] , [
z(x, 0)
`(x, 0)

]
=

[
x
0

]

What makes CNFs slow?
Trajectories can be complicated
leading to high number of function
evaluations.
Trace computation costs O(d2)
FLOPS in general.

I FFJORD uses Hutchinson’s
estimator for O(d) FLOPS in
training.
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Straight Trajectories

Include some optimal transport (OT)

In OT, a unique mapping exists.

We regularize the optimization problem

min
θ

Eρ0(x)

{
C(x, T ) + L(x, T )

}
(4)

subject to (1).

The L2 transport costs are given by

L(x, T ) =

∫ T

0

1

2
‖v(z(x, t), t;θ)‖2 dt.
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More OT
Potential Function Φ

Apply the Pontryagin maximum principle18

to (4)

There exists a scalar potential function
Φ: Rd × [0, T ]→ R such that

v(x, t;θ) = −∇Φ(x, t;θ). (5)

Analogous to classical physics, samples move in a
manner to minimize their potential.

We parametrize potential Φ instead of v.

18Evans. An Introduction to Mathematical Optimal Control Theory Version 0.2. 2013.
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More OT
HJB Equation

The optimality conditions of (4) lead to
another regularizer.

Potential Φ satisfies the Hamilton-Jacobi-Bellman
(HJB) equation 19

−∂tΦ(x, t) +
1

2
‖∇Φ(z(x, t), t)‖2 = 0,

Φ(x, T ) = G(x)
(6)

where
G(z(x, T )) =

1 + log
(
ρ0(x)

)
− log

(
ρ1(z(x, T ))

)
− `(x, T )

(7)

Terminal condition G derives from the variational
derivative or the Kullback-Leibler (KL) divergence.

19Evans. “Partial differential equations and Monge-Kantorovich mass transfer”. 1997.
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More OT
HJB regularizer R

Penalize deviations from the HJB equation

We add another regularizer, so the optimization
problem is

min
θ

Eρ0(x)

{
C(x, T ) + L(x, T ) +R(x, T )

}
subject to (1).

The HJB regularizer is computed as

R(x, T ) =

∫ T

0

∣∣∣∣∂tΦ(z(x, t), t)− 1

2
‖∇Φ(z(x, t), t)‖2

∣∣∣∣ dt.
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OT-Flow Formulation

We incorporate the time integration in the ODE solver.

min
θ

Eρ0(x)

{
C(x, T ) + L(x, T ) +R(x, T )

}
subject to

∂t


z(x, t)

`(x, t)

L(x, t)

R(x, t)

 =


−∇Φ(z(x, t), t;θ)

− tr(∇2Φ(z(x, t), t;θ))
1
2‖∇Φ(z(x, t), t;θ)‖2∣∣∂tΦ(z(x, t), t;θ)− 1

2‖∇Φ(z(x, t), t;θ)‖2
∣∣


with initial conditions

z(x, 0) = x and `(x, 0) = L(x, 0) = R(x, 0) = 0
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Other OT approaches in CNFs

Table: Comparison of flow formulations.

Model ODE (1) Φ L2 cost HJB reg. ‖∇v‖2F
FFJORD20 3 7 7 7 7

RNODE21 3 7 3 7 3

Monge-Ampère Flows22 3 3 7 7 7

Potential Flow Gen.23 3 3 7 3 7

OT-Flow 3 3 3 3 7

20Grathwohl et al. 2019.
21Finlay et al. “How to train your neural ODE”. 2020.
22Zhang, E, and Wang. “Monge-Ampère Flow for Generative Modeling”. 2018.
23Yang and Karniadakis. “Potential Flow Generator with L2 Optimal Transport

Regularity for Generative Models”. 2019.
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Improving the Trace Computation

General Trace Computation: O(d2) FLOPS

Trace Estimators used in state-of-the-art: O(d) FLOPS

Our Exact Trace in OT-Flow O(d) FLOPS

In runtime, our exact trace is competitive with the estimators
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Exact Trace Computation
Our model

Neural Network

Φ(s;θ) = w>N(s;θN ) +
1

2
s>(A>A)s+ b>s+ c,

where θ = (w,θN ,A, b, c)
(8)

Gradient
∇sΦ(s;θ) = ∇sN(s;θN )w + (A>A)s+ b (9)

where
space-time inputs s = (x, t) ∈ Rd+1

neural network N(s;θN ) : Rd+1 → Rm (we choose ResNet)
θ consists of all the trainable weights:
w ∈ Rm, θN ∈ Rp, A ∈ Rr×(d+1), b ∈ Rd+1, c ∈ R
where r = min(10, d)
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Exact Trace Computation
Analytic Gradient Computation

N is an (M + 1)-layer ResNet

Forward propagation
Compute N(s;θN ) = uM .

u0 = σ(K0s+ b0)

u1 = u0 + hσ(K1u0 + b1)

...
...

uM = uM−1 + hσ(KMuM−1 + bM )

where
fixed step size h > 0

ResNet weights θN are
I K0 ∈ Rm×(d+1)

I K1, . . . ,KM ∈ Rm×m

I b0, . . . , bM ∈ Rm

σ(x) = log(exp(x) + exp(−x))
I the antiderivative of

hyperbolic tangent
I so, σ′(x) = tanh(x)
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Exact Trace Computation
Analytic Gradient Computation

N is an (M + 1)-layer ResNet

Forward propagation
Compute N(s;θN ) = uM .

u0 = σ(K0s+ b0)

u1 = u0 + hσ(K1u0 + b1)

...
...

uM = uM−1 + hσ(KMuM−1 + bM )

Backpropagation
Compute ∇sN(s;θN )w = z0

zM+1 = w

zM = zM+1

+ hK>M diag
(
σ′(KMuM−1 + bM )

)
zM+1

...
...

z1 = z2 + hK>1 diag
(
σ′(K1u0 + b1)

)
z2

z0 = K>0 diag
(
σ′(K0s+ b0)

)
z1
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Exact Trace Computation
Laplacian of the Potential

tr
(
∇2Φ(s;θ)

)
= tr

(
E> (∇2

s(N(s;θN )w) +A>A)E
)

for E = eye(d+1,d)

Focus on the nontrivial part (the ResNet)

tr
(
E>∇2

s(N(s;θN )w)E
)

= t0 + h

M∑
i=1

ti,

With one pass, we calculate the trace of each layer

t0 = tr
(
J>i−1∇s

(
K>i diag(σ′′(Kiui−1(s) + bi))zi+1

)
Ji−1

)
=
(
σ′′(K0s+ b0)� z1

)>(
(K0E)� (K0E)

)
1 and

ti = tr
(
J>i−1∇s

(
K>i diag(σ′′(Kiui−1(s) + bi))zi+1

)
Ji−1

)
=
(
σ′′(Kiui−1 + bi)� zi+1

)>(
(KiJi−1)� (KiJi−1)

)
1.

where Jacobian Ji−1 = ∇su>i−1 ∈ Rm×d, � denotes Hadamard product,
and 1=ones(d,1).
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(
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)
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E> (∇2
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Exact Trace Computation
Laplacian of the Potential

tr
(
∇2Φ(s;θ)

)
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(
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(
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)
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)
=
(
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(K0E)� (K0E)
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where Jacobian Ji−1 = ∇su>i−1 ∈ Rm×d, � denotes Hadamard product,
and 1=ones(d,1).
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Exact Trace Computation
Efficiency

Update and overwrite Ji−1 = ∇su>i−1 ∈ Rm×d in the forward pass as

∇su>i = ∇sui−1 + hσ′(Kiui−1 + bi)K
>
i ∇sui−1

J ← J + hσ′(Kiui−1 + bi)K
>
i J

Overall Cost is O(m2 · d) FLOPS.

Recall: K0 ∈ Rm×(d+1) and K1, . . . ,KM ∈ Rm×m

L Ruthotto, S Osher, W Li, L Nurbekyan, S Wu Fung
A ML Framework for Solving High-Dimensional MFG and MFC
PNAS 117 (17), 9183-9193, 2020.
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Results
Fast Training

FFJORD DO OT-FLOW
0

50

100

150

200

Training Time (hr)
POWER,       d=6
GAS,            d=8
HEPMASS,    d=21
MINIBOONE,d=43
BSDS300,    d=63

OT-Flow has 19x training speed-up on
average

Reasons
OT-inspired regularization leads to
straight trajectories that are inexpensive
to integrate.
The trace computation is efficient and
exact.
The potential flows approach results in
fewer weights and a smaller model.

DO, S Wu Fung, X Li, L Ruthotto
OT-Flow: Fast and Accurate CNFs via OT
arXiv:2006.00104, 2020.
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Results
Fast Inference

FFJORD OT-FLOW

100

101

102

103

104

Testing Time (s)
POWER,       d=6
GAS,            d=8
HEPMASS,    d=21
MINIBOONE,d=43
BSDS300,    d=63

OT-Flow has 28x testing speed-up on
average

Inference-Specific Reasons
Inference uses exact trace (no
estimates)

I State-of-the-art approaches use AD to
obtain exact trace with O(d2)

I Meanwhile, our exact trace is O(d)

DO, S Wu Fung, X Li, L Ruthotto
OT-Flow: Fast and Accurate CNFs via OT
arXiv:2006.00104, 2020.
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More Results
Details in paper

Samples OT-Flow FFJORD
x ∼ ρ0(x) f(x) f(x)

y ∼ ρ1(y) f−1(y) f−1(y)

Two of the 43 dimensions in the
MINIBOONE CNF.

red boxed values are original; others are interpolated in rho_1 space

MNIST synthetic generation.
Original images boxed in red.

DO, S Wu Fung, X Li, L Ruthotto
OT-Flow: Fast and Accurate CNFs
via OT
arXiv:2006.00104, 2020.
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Conclusions

Discretize-Optimize
DO often converges faster than OD when used in neural ODEs
For CNFs, DO provides 6x training speedup

OT-Flow
OT regularization ⇒ well-posed and efficient time integration
Potential flow ⇒ smaller model
OT-Flow achieves 19x training speedup and 28x inference speedup
over same baseline

DO and L Ruthotto
DO vs. OD for Time-Series
Regression and CNFs
arXiv:2005.13420, 2020.

DO, S Wu Fung, X Li, L Ruthotto
OT-Flow: Fast and Accurate CNFs via OT
arXiv:2006.00104, 2020.

Code: github.com/EmoryMLIP/OT-Flow
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