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an arbitrary probability distribution and a standard normal distribution  f(x) 2(x,T) _— “ilv(z(x, 1), )2 dt.
whose densities we denote by pg and p;, respectively. - 2

By change of variables, to (3) to penalize the arc-length of the trajectories.

log po() = log p1(f(x)) +log|det Vf(x)| forall <R (1) Potential Function By the Pontryagin maximum

principle [5], there exists a scalar potential function
®: R?% x [0,T] — R such that

In CNFs, f solves the neural ordinary differential equation (ODE) [2, 3]
p z(x,t) | v(z(x,t),t;0) z(x,0) | | x 2)
b)) ||t (Vv(z(,t),50)) | l(x,0) | | 0|’

where, for artificial time ¢ € |0, T,

time t

v(z,t;0) = —Vo(x,t;0).

Idea: Analogous to classical physics, samples move to
minimize their potential
= We parameterize potential ¢ instead of v.
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e x mapsto f(x) = z(x,T) following trajectory z: R¢ x [0,T] — R

HJB Regularizer At optimality, @ satisfies the 50"

Hamilton-Jacobi-Bellman (HJB) equation [6]

e v: R x [0,T] — R is a neural network layer parameterized by 6
o /(x,T) =logdet Vf(x), derived from Jacobi’s Formula [2]
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Mlcroscale.. an arbitrary sample  maps to a normally distributed f(x) Figure 1: While a CNF can have curved || — 8,®(z, 1) = - IV (2(x, 1), )|,
Macroscale: po maps to 1 trajectories, OT-Flow’s are straight (mod- Dl T) — 1 41 | " Y T
CNPFs are trained by solving the optimization problem [1, 3] ification of Fig. 1in [3, 4]). (.T) = 1+log (po(x)) — log (p1(2(2, 1)) — ¢(,T) 0-
1 d To penalize sub-optimality, use H]B regularizer FFJORD RNODE OT-FLOW
min [F {C(m,T) = —||z(x, D)||* = l(x,T) + = 10g(27r)} s.t. (2). (3) . .. .
0 o) 2 2 T . 8x speedup in training and 24x speedup in inference
o R(z,T) = / 0,®(z(x,t),t) — =||VP(2(x, 1), t)HQ dt || relative to the state-of-the-art RNODE [4] on five real

High Training Costs Our Contributions 0 . datasets of dimensionality d = 6, 8,21, 43, 63

e Many functions evaluations are needed to solve (2) Optimal Transport (OT) Incorporating OT, we regular-

ize the CNF so it has a unique solution (Figure 1). OT-Flow Optimization Problem
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