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MOTIVATION

Figure 1: While a CNF can have curved
trajectories, OT-Flow’s are straight (mod-
ification of Fig. 1 in [3, 4]).

Continuous Normalizing Flows (CNFs)
A normalizing flow [1] is an invertible mapping f : Rd → Rd between
an arbitrary probability distribution and a standard normal distribution
whose densities we denote by ρ0 and ρ1, respectively.
By change of variables,

log ρ0(x) = log ρ1(f(x)) + log |det∇f(x) | for all x ∈ Rd. (1)

In CNFs, f solves the neural ordinary differential equation (ODE) [2, 3]
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where, for artificial time t ∈ [0, T ],
• xmaps to f(x) = z(x, T ) following trajectory z : Rd × [0, T ]→ Rd

• v : Rd × [0, T ]→ Rd is a neural network layer parameterized by θ
• `(x, T ) = log det∇f(x), derived from Jacobi’s Formula [2]

Microscale: an arbitrary sample xmaps to a normally distributed f(x)
Macroscale: ρ0 maps to ρ1

CNFs are trained by solving the optimization problem [1, 3]
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}
s.t. (2). (3)

High Training Costs

• Many functions evaluations are needed to solve (2)
• Computing the trace with automatic differentiation

(AD) requires vector-Jacobian products with all d
standard basis vectors, costing O(d2) FLOPs total

Our Contributions
Optimal Transport (OT) Incorporating OT, we regular-
ize the CNF so it has a unique solution (Figure 1).

Analytic Exact Trace We derive formulae for an exact
trace computation with complexity O(d) FLOPs.

EXACT TRACE

We devise an efficient analytic method for computing the trace by exploiting

tr
(
∇2Φ(s;θ)

)
= tr

(
E>∇2

sΦ(s;θ)E
)

for E = eye(d+1,d).

In runtime, the exact trace is competitive with estimators used in other CNFs.
In convergence, the exact trace during training achieves 1) quicker validation convergence

than using an estimator and 2) less variance in training loss than using an estimator
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OPTIMAL TRANSPORT
L2 Transport Costs Add transport costs

L(x, T ) =

∫ T

0

1

2
‖v(z(x, t), t)‖2 dt.

to (3) to penalize the arc-length of the trajectories.

Potential Function By the Pontryagin maximum
principle [5], there exists a scalar potential function
Φ: Rd × [0, T ]→ R such that

v(x, t;θ) = −∇Φ(x, t;θ).

Idea: Analogous to classical physics, samples move to
minimize their potential
⇒We parameterize potential Φ instead of v.

HJB Regularizer At optimality, Φ satisfies the
Hamilton-Jacobi-Bellman (HJB) equation [6]

− ∂tΦ(x, t) = −1

2
‖∇Φ(z(x, t), t)‖2,
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)
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)
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To penalize sub-optimality, use HJB regularizer

R(x, T ) =

∫ T

0

∣∣∣∣∂tΦ(z(x, t), t)− 1

2
‖∇Φ(z(x, t), t)‖2

∣∣∣∣ dt

OT-Flow Optimization Problem

min
θ

E
ρ0(x)

{
C(x, T ) + L(x, T ) +R(x, T )

}
s.t. (2)

RESULTS
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8x speedup in training and 24x speedup in inference
relative to the state-of-the-art RNODE [4] on five real
datasets of dimensionality d = 6, 8, 21, 43, 63
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