OT- Flow Fast and Accurate Contlnuous
Normal&zﬂng Flows via Optimal Transp@rt

_»:_m'ig
?‘“ﬂ? . i
g . AAAI 2021

¥
g

Eo h

rDerelf Onken "

EMORY U\ \E i

OL\DED T\



Collaborators and Acknowledgments

P

S

UCLA

\” EMORY

Lars Ruthotto  UNIVERSITY

Samy Wu Fung

UCLA Emory Emory
. »/,"" o R
Funding: ‘ p{(( BSF UNITEDHEALTH GROUP'
: <

Special thanks: Organizers and staff of IPAM Long Program MLP 2019 and NVIDIA.

Background Feb 2021 2/23



Overview

@ Background
» Normalizing Flows
» Continuous Normalizing Flows
e Mathematical Formulation
» Optimal Transport
» Potential Function
» Hamilton-Jacobi-Bellman (HJB) Regularizers
@ Numerical Implementation
» Efficient Exact Trace Computation
» Discretize-then-Optimize
@ Results
» 8x training speed-up
> 24x testing speed-up
e Conclusion

Background

OT-Flow




Normalizing Flows for Density Estimation

A normalizing flow!:? is an invertible mapping f: R — R? between an arbitrary probability
distribution and a standard normal distribution with respective densities py and p;

Po / p1
V=

By the change of variables formula, the flow satisfies
log po(x) = log p1(f(x)) + log|det Vf(x)| forall xe R% (1)

!Rezende and Mohamed. “Variational Inference with Normalizing Flows'. 2015.
2Papamakarios et al. “Normalizing Flows for Probabilistic Modeling and Inference”. 2019.
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Two-Dimensional Example

Gaussian Mixture Problem

Data
e sample xg £
. Z(zn- T) = f(zu)
x Y
3 3
1F B 1
AN
l 1 4 H 1
1 I Estimate Generation
v £0
3 3
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Continuous Normalizing Flows (CNFs)

Issue: log-determinants cost O(d®) FLOPS in general
One Solution: replace the log-det with a trace computation for O(d?) FLOPS in general

Using a neural ordinary differential equation (ODE)3 leads to the CNF*
P z(x,t) | v(z(w,t),t; 0) z(x,0) | | =x 2)
L) | Tt (Vv(z(=,t),t:0) | lx,0) | | 0|’

@ z(x,t) are the features for initial state « at time ¢ € [0, 7]

where

o v: R? x [0,T] — R% is a neural network layer with parameters 6
° f(z)=z2(z,T)
o {(z,T) = log po(x) — log p1(f(z))

3Chen et al. "Neural Ordinary Differential Equations”. 2018.
“Grathwohl et al. “FFJORD: Free-form Continuous Dynamics for Scalable Reversible...". 2019.
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CNF Optimization Problem

For expected negative log-likelihood®:®
1 d
Cl@,T) = gllz(@ )| - (=, T) + 5 log(27),

we optimize (yt)

min E {C(x,T)}

0 po(x)
subject to
[0ttt - [228)-[5)

5Rezende and Mohamed. “Variational Inference with Normalizing Flows'. 2015.
5Papamakarios et al. “Normalizing Flows for Probabilistic Modeling and Inference”. 2019.
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High Costs of CNFs

CNFs have high computation cost because
@ Trajectories can be complicated leading to high
number of function evaluations
@ Expensive trace computation

» State-of-the-art train with O(d) trace cost by using
Hutchinson’s trace estimator’

tr(Vv) = ¢]E) {eT Vv e}

N
JAVAN

for noise vector € w/ density ¢(¢), E{e} =0,

Cov(e) =1 - #®0)

VA

"Hutchinson. “A Stochastic Estimator of the Trace of the Influence Matrix for...". 1990.
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Straight Trajectories

Include some optimal transport (OT)
= model named OT-Flow

Arclength of the trajectories

T
L(a:,T):/O SIv(z(@, 1), 1, 0)|

We regularize the optimization problem

min FE {C(m,T) + L(x,T)}
po()
subject to (2).

Now, a unique mapping exists.

Formulation

(3)

“

Feb 2021

VL

9/23



Potential Function ®

Apply the Pontryagin maximum principle® to (3)
x ~ po(x)
y~£1(y)

-+ General Normalizing Flow f There exists a scalar potential
— Our Model f ] d

‘ ‘ ‘ function @: R* x [0,7] - R
such that

v(z,t;0) = —Vo(x,t;0).

3

Analogous to classical physics,
samples move in a manner to
minimize their potential.

We parametrize potential
® instead of v.

8Pontryagin et al. The Mathematical Theory of Optimal Processes. 1962.
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HJB Equations

The optimality conditions of (3) lead to another regularizer.

Potential ® satisfies the Hamilton-Jacobi-Bellman (HJB) equations®

_0,0(2(, 1), 1) = —%||V<I>(z(a:,t),t)||2, 0<t<T
CI)(Z(CC7T)7T) =1+log (po(ﬂ?)) — log (pl(z(xaT))) - E(:z:, T)

Terminal condition ®(z(x,T"),T) derives from the variational
derivative of the Kullback-Leibler (KL) divergence

9Bellman. Dynamic Programming. 1957.
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HJB Regularizer R

Penalize deviations from the HJB equation

We add another regularizer, so the optimization problem is

min T {C(m,T)+L(a:,T)+R(m,T)}
0 po(x)

subject to (2).

The HJB regularizer'® is computed as

T
R(ac,T):/O (%(I)(z(m,t),t)—%HV(I)(z(a:,t),t)Hz dt.

%Yang and Karniadakis. “Potential Flow Generator With Lo Optimal Transport Regularity...”. 2020.
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HJB Regularizer Effectiveness

Compare three models:

No HJB
2 Time Steps

@ No HJB regularizer with
only 2 time steps

e No HJB regularizer with
only 8 time steps

@ Using HJB regularizer with
only 2 time steps

No HJB
8 Time Steps

HJB regularizer gives similar
results to using many time steps

With HJB
2 Time Steps
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OT-Flow Formulation

We incorporate the time integration in the ODE solver.

moin B {C(x,T) + L(x,T) + R(:B,T)}

po(x)
subject to
z(x,t) —Vo(z(x,t),t;0)
5 bz, t) | —tr (V2®(z(w, 1),t;0))
| L) LIVe(z(@,1),t:0)]
R(x,t) | 0,®(2(w, t),1;0) — $||VP(2(x,1),t; 0)]* |

with initial conditions

z(x,0)=x and {(x,0) = L(x,0) = R(x,0) =0

Background Formulation Implementation Results
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Trace Integration

Uniqueness of OT-Flow:

T
How we calculate ¢(x,T) = / —tr (V2®@(2(z,t),t;0)) dt
0

OT-Flow: Comparatively, state-of-the-art:
e Trace @ Trace (during training)
» Exact Trace Computation » Hutchinson's Estimator
e Time Integration @ Time Integration
» Discretize-then-optimize (DTO)*:12 » Optimize-then-discretize (OTD)*!+12
1 Gholami, Keutzer, and Biros. “ANODE: Unconditionally Accurate Memory-Efficient Gradients for...". 2019.
20nken and Ruthotto. "Discretize-Optimize vs. Optimize-Discretize for Time-Series...". 2020.
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Improving the Trace Computation

Competitive in Time Complexity
General Trace Computation: O(d?) FLOPS
Trace Estimators: O(d) FLOPS
Our Exact Trace in OT-Flow O(d) FLOPS

Competitive in Runtime
(a) MINIBOONE, d=43

Runtime (s)
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(c) MNIST, d=784
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Results

model’s hidden dimension is fixed

Relative Error

(d) Accuracy of Estimators
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Improving the Trace Computation

Improved Convergence

Exact Trace = Improved Convergence

Compare OT-Flow (using exact trace)
against a replicate model using
Hutchinson's trace estimator

OT-Flow converges
1) in fewer iterations
2) with less training variance

Formulation

Implementation

Loss C+L+R
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Exact Trace Computation

Our model

Neural Network
1
D(s;0) =w' N(s;0y)+ 5.sT(ATA).s +b's+ec,
where 0 = (w,0y,A,b,c)
Gradient
Vs®P(5;0) = VoN(s;0n)w+ (AT A)s+b
where
@ space-time inputs s = (x,t) € R+
e neural network N(s;0x): R — R™ (we choose ResNet)

@ 0O consists of all the trainable weights:
weR™, Oy c RP, Ac R™HD pc R, c€ R where 7 = min(10, d)

Feb 2021
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Exact Trace Computation
Analytic Gradient and Trace Computation

N is an (M + 1)-layer ResNet

Forward propagation

Compute N(s;0n) = uyy. where
o fixed step size h > 0
ug = 0(Kos + by) @ ResNet weights O are

» Ko € Rmx(d+1)

» Ki,..., Ky € Rm*™

: ; » by,...,bpr €R™

unr = upr—1 + ho(Kyrunr—1 + bar) e o(x) =log(exp(x) + exp(—x))

» the antiderivative of hyperbolic tangent
» so, o/(x) = tanh(x)

u; = Ug +hO'(K1UO +b1)

Results Conclusion Feb 2021

Implementation

Background Formulation



Exact Trace Computation
Analytic Gradient Computation

N is an (M + 1)-layer ResNet

Forward propagation Backpropagation (chain rule)
Compute N(s;0n) = uyy. Compute VN (s;0n)w = z( analytically
Laplacian
ug = o (Kos + by) Compute
= ho(K b
ur = uo +ho(Kyuo +by) tr (V20(s;0)) = tr (BT (V3(N(s:0x)w) + AT A) E)

for E =eye(d+1,d)

uy =up—1+ho(Kpyup—1+ b
M a1+ ho(K yrviag—1 + bu) with cost O(m? - d) FLOPS.

(details in paper)

Feb 2021
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Other OT approaches in CNFs

Model Formulation Training Implementation Inference
ode

ODEs(2) ® L R ||Vv||% Solver DTO/OTD Trace Trace
FFJORD?!3 v X X X X RK(4)5 OTD Hutch w/ Rad AD exact
RNODE! v X v x / RK 4 OTD Hutch w/ Rad AD exact
M-A Flows!® v X XX RK 4 DTO Hutch w/ Gauss
PFGs!® v X/ X RK 1 DTO AD exact
OT-Flow v v v/ X RK 4 DTO efficient exact

RK: Runge-Kutta, OTD: optimize-then-discretize, DTO: discretize-then-optimize, AD: automatic
differentiation, Hutch: Hutchinson's trace estimator where € from Rademacher or Gaussian distribution

3Grathwohl et al. “FFJORD: Free-form Continuous Dynamics for Scalable Reversible...". 2019.

Finlay et al. "How to Train your Neural ODE: the World of Jacobian and Kinetic Regularization”. 2020.
15Zhang and Wang. “Monge-Ampére Flow for Generative Modeling”. 2018.
®Yang and Karniadakis. “Potential Flow Generator With Lo Optimal Transport Regularity...”. 2020.
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Fast Training
Training Time (hr)

—e— POWER, d=6
—»— GAS, d=8

150 OT-Flow has 8x training speed-up on average
—&— HEPMASS, d=21
—m— MINIBOONE,d=43 R
125 —— BSDS300, d=63 easons
@ OT-inspired regularization leads to straight
100 trajectories that are inexpensive to integrate.

@ Exact trace computation
75 » Competitive in time
» Better in convergence

50 @ The potential flows approach results in fewer
weights and a smaller model.

25

0

FFJORD RNODE OT-FLOW
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Fast Inference

Testing Time (s)

104
103
102
1ol —®— POWER,  d=6
—#— GAS, d=8
—— HEPMASS, d=21
—m— MINIBOONE,d=43
10°{ —— BSDS300, d=63
FFJORD RNODE OT-FLOW

OT-Flow has 24x testing speed-up on average

Reasons

@ Inference uses exact trace (no estimates)

» State-of-the-art approaches use AD to obtain exact
trace with O(d?)
» Meanwhile, our exact trace is O(d)

Background
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More Results

Samples OT FIow FFJORD
xr ~ p()

ym

Two of the 43 dimensions in the MINIBOONE CNF

MNIST synthetic generation. Original
images boxed in red.
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Conclusions

Formulation

@ CNF + OT = well-posed

o HJB regularizer reduces training costs
Implementation

@ Discretize-then-optimize + Runge-Kutta 4
= efficient ODE solve

e Efficient exact trace improves CNF training

@ Public Code
github.com/EmoryMLIP/0T-Flow

VA

Conclusion

z(z,0)

Feb 2021

A

23 / 23



References |

Bellman, Richard (1957). Dynamic Programming. Princeton University Press, Princeton, N. J.

Chen, Tian Qi et al. (2018). “Neural Ordinary Differential Equations”. In: Advances in Neural
Information Processing Systems, pp. 6571-6583.

Finlay, Chris et al. (2020). “How to Train your Neural ODE: the World of Jacobian and Kinetic
Regularization”. In: International Conference on Machine Learning (ICML).

Gholami, Amir, Kurt Keutzer, and George Biros (2019). “ANODE: Unconditionally Accurate
Memory-Efficient Gradients for Neural ODEs". In: International Joint Conferences on
Artificial Intelligence (IJCAI).

Grathwohl, Will et al. (2019). “FFJORD: Free-form Continuous Dynamics for Scalable
Reversible Generative Models”. In: International Conference on Learning Representations
(ICLR).

Hutchinson, Michael F (1990). “A Stochastic Estimator of the Trace of the Influence Matrix for

Laplacian Smoothing Splines”. In: Communications in Statistics-Simulation and
Computation 19.2, pp. 433-450.

References Feb 2021 24 /23



References |l

Onken, Derek and Lars Ruthotto (2020). “Discretize-Optimize vs. Optimize-Discretize for
Time-Series Regression and Continuous Normalizing Flows". [n: arXiv:2005.13420.

Papamakarios, George et al. (2019). “Normalizing Flows for Probabilistic Modeling and
Inference”. In: arXiv preprint arXiv:1912.02762.

Pontryagin, L. S. et al. (1962). The Mathematical Theory of Optimal Processes. Translated by
K. N. Trirogoff; edited by L. W. Neustadt. Interscience Publishers John Wiley & Sons, Inc.
New York-London, pp. viii+360.

Rezende, Danilo Jimenez and Shakir Mohamed (2015). “Variational Inference with Normalizing
Flows". In: International Conference on Machine Learning (ICML), pp. 1530-1538.

Yang, L. and G. E. Karniadakis (2020). “Potential Flow Generator With Ly Optimal Transport
Regularity for Generative Models". In: |[EEE Transactions on Neural Networks and Learning
Systems.

Zhang, Linfeng, Lei Wang, et al. (2018). “Monge-Ampére Flow for Generative Modeling”. In:
arXiv preprint arXiv:1809.10188.

References

Feb 2021 25 /23



	Background
	Formulation
	Implementation
	Results
	Conclusion
	Appendix

