OT- Flow Fast and Accurate Contlnuous
Normal&zﬂng Flows via Optimal Transp@rt

_»:_m'ig
?‘“ﬂ? . i
g . AAAI 2021

¥
g

Eo h

rDerelf Onken "

EMORY U\ \E i

OL\DED T\

Collaborators and Acknowledgments

P

S

UCLA

\” EMORY

Lars Ruthotto UNIVERSITY

Samy Wu Fung

UCLA Emory Emory
. »/,"" o R
Funding: ‘ p{((BSF UNITEDHEALTH GROUP'
: <

Special thanks: Organizers and staff of IPAM Long Program MLP 2019 and NVIDIA.

Background Feb 2021 2/23

Overview

@ Background
» Normalizing Flows
» Continuous Normalizing Flows
e Mathematical Formulation
» Optimal Transport
» Potential Function
» Hamilton-Jacobi-Bellman (HJB) Regularizers
@ Numerical Implementation
» Efficient Exact Trace Computation
» Discretize-then-Optimize
@ Results
» 8x training speed-up
> 24x testing speed-up
e Conclusion

Background

OT-Flow

Normalizing Flows for Density Estimation

A normalizing flow!:? is an invertible mapping f: R — R? between an arbitrary probability
distribution and a standard normal distribution with respective densities py and p;

Po / p1
V=

By the change of variables formula, the flow satisfies
log po(x) = log p1(f(x)) + log|det Vf(x)| forall xe R% (1)

!Rezende and Mohamed. “Variational Inference with Normalizing Flows'. 2015.
2Papamakarios et al. “Normalizing Flows for Probabilistic Modeling and Inference”. 2019.
Background Formulation Implementation Results Conclusion Feb 2021 4/23

Two-Dimensional Example

Gaussian Mixture Problem

Data
e sample xg £
. Z(zn- T) = f(zu)
x Y
3 3
1F B 1
AN
l 1 4 H 1
1 I Estimate Generation
v £0
3 3

Background Formulation Implementation Results Conclusion Feb 2021 5/23

Continuous Normalizing Flows (CNFs)

Issue: log-determinants cost O(d®) FLOPS in general
One Solution: replace the log-det with a trace computation for O(d?) FLOPS in general

Using a neural ordinary differential equation (ODE)3 leads to the CNF*
P z(x,t) | v(z(w,t),t; 0) z(x,0) | | =x 2)
L) | Tt (Vv(z(=,t),t:0) | lx,0) | | 0|’

@ z(x,t) are the features for initial state « at time ¢ € [0, 7]

where

o v: R? x [0,T] — R% is a neural network layer with parameters 6
° f(z)=z2(z,T)
o {(z,T) = log po(x) — log p1(f(z))

3Chen et al. "Neural Ordinary Differential Equations”. 2018.
“Grathwohl et al. “FFJORD: Free-form Continuous Dynamics for Scalable Reversible...". 2019.

Background Formulation Implementation Results Conclusion Feb 2021 6 /23

CNF Optimization Problem

For expected negative log-likelihood®:®
1 d
Cl@,T) = gllz(@)| - (=, T) + 5 log(27),

we optimize (yt)

min E {C(x,T)}

0 po(x)
subject to
[0ttt - [228)-[5)

5Rezende and Mohamed. “Variational Inference with Normalizing Flows'. 2015.
5Papamakarios et al. “Normalizing Flows for Probabilistic Modeling and Inference”. 2019.

Results Conclusion

Feb 2021

Implementation

Background Formulation

High Costs of CNFs

CNFs have high computation cost because
@ Trajectories can be complicated leading to high
number of function evaluations
@ Expensive trace computation

» State-of-the-art train with O(d) trace cost by using
Hutchinson’s trace estimator’

tr(Vv) = ¢]E) {eT Vv e}

N
JAVAN

for noise vector € w/ density ¢(¢), E{e} =0,

Cov(e) =1 - #®0)

VA

"Hutchinson. “A Stochastic Estimator of the Trace of the Influence Matrix for...". 1990.
Background Feb 2021 8/23

Straight Trajectories

Include some optimal transport (OT)
= model named OT-Flow

Arclength of the trajectories

T
L(a:,T):/O SIv(z(@, 1), 1, 0)|

We regularize the optimization problem

min FE {C(m,T) + L(x,T)}
po()
subject to (2).

Now, a unique mapping exists.

Formulation

(3)

“

Feb 2021

VL

9/23

Potential Function ®

Apply the Pontryagin maximum principle® to (3)
x ~ po(x)
y~£1(y)

-+ General Normalizing Flow f There exists a scalar potential
— Our Model f] d

‘ ‘ ‘ function @: R* x [0,7] - R
such that

v(z,t;0) = —Vo(x,t;0).

3

Analogous to classical physics,
samples move in a manner to
minimize their potential.

We parametrize potential
® instead of v.

8Pontryagin et al. The Mathematical Theory of Optimal Processes. 1962.

Formulation Implementation Results Conclusion Feb 2021

HJB Equations

The optimality conditions of (3) lead to another regularizer.

Potential ® satisfies the Hamilton-Jacobi-Bellman (HJB) equations®

_0,0(2(, 1), 1) = —%||V<I>(z(a:,t),t)||2, 0<t<T
CI)(Z(CC7T)7T) =1+log (po(ﬂ?)) — log (pl(z(xaT))) - E(:z:, T)

Terminal condition ®(z(x,T"),T) derives from the variational
derivative of the Kullback-Leibler (KL) divergence

9Bellman. Dynamic Programming. 1957.

Formulation

Feb 2021 11 /23

HJB Regularizer R

Penalize deviations from the HJB equation

We add another regularizer, so the optimization problem is

min T {C(m,T)+L(a:,T)+R(m,T)}
0 po(x)

subject to (2).

The HJB regularizer'® is computed as

T
R(ac,T):/O (%(I)(z(m,t),t)—%HV(I)(z(a:,t),t)Hz dt.

%Yang and Karniadakis. “Potential Flow Generator With Lo Optimal Transport Regularity...”. 2020.
Feb 2021 12 / 23

Formulation

HJB Regularizer Effectiveness

Compare three models:

No HJB
2 Time Steps

@ No HJB regularizer with
only 2 time steps

e No HJB regularizer with
only 8 time steps

@ Using HJB regularizer with
only 2 time steps

No HJB
8 Time Steps

HJB regularizer gives similar
results to using many time steps

With HJB
2 Time Steps

Background Formulation Implementation Results Conclusion Feb 2021

OT-Flow Formulation

We incorporate the time integration in the ODE solver.

moin B {C(x,T) + L(x,T) + R(:B,T)}

po(x)
subject to
z(x,t) —Vo(z(x,t),t;0)
5 bz, t) | —tr (V2®(z(w, 1),t;0))
| L) LIVe(z(@,1),t:0)]
R(x,t) | 0,®(2(w, t),1;0) — $||VP(2(x,1),t; 0)]* |

with initial conditions

z(x,0)=x and {(x,0) = L(x,0) = R(x,0) =0

Background Formulation Implementation Results

Conclusion Feb 2021

Trace Integration

Uniqueness of OT-Flow:

T
How we calculate ¢(x,T) = / —tr (V2®@(2(z,t),t;0)) dt
0

OT-Flow: Comparatively, state-of-the-art:
e Trace @ Trace (during training)
» Exact Trace Computation » Hutchinson's Estimator
e Time Integration @ Time Integration
» Discretize-then-optimize (DTO)*:12 » Optimize-then-discretize (OTD)*!+12
1 Gholami, Keutzer, and Biros. “ANODE: Unconditionally Accurate Memory-Efficient Gradients for...". 2019.
20nken and Ruthotto. "Discretize-Optimize vs. Optimize-Discretize for Time-Series...". 2020.

Background Formulation Implementation Results Conclusion Feb 2021

Improving the Trace Computation

Competitive in Time Complexity
General Trace Computation: O(d?) FLOPS
Trace Estimators: O(d) FLOPS
Our Exact Trace in OT-Flow O(d) FLOPS

Competitive in Runtime
(a) MINIBOONE, d=43

Runtime (s)

Background

10°

H
2
L

,_.
o
N

H
<
b

(b) BSDS300, d=63

assumes

(c) MNIST, d=784

1

10 20 30

43 11020304050 63 1

200 400 600 784

Number of Hutchinson Vectors

Formulation

Implementation

Results

model’s hidden dimension is fixed

Relative Error

(d) Accuracy of Estimators

]
®- Hutchinson d=43

» Hutchinson d=63
»- Hutchinson d=784
Exact

0

500 750

Number of Hutchinson Vectors

Conclusion

Feb 2021

Improving the Trace Computation

Improved Convergence

Exact Trace = Improved Convergence

Compare OT-Flow (using exact trace)
against a replicate model using
Hutchinson's trace estimator

OT-Flow converges
1) in fewer iterations
2) with less training variance

Formulation

Implementation

Loss C+L+R

Loss C+L+R

MINIBOONE

7000

6000 +
5000
4000
3000
2000
1000

——

Hutchinson Validation
Exact Trace Validation

Hutchinson Train
Exact Trace Train

——

0

2000 4000 6000 8000 10000
Iteration (Number of Batches)
GAS

10000

-10000

-20000

——

Hutchinson Validation
—— Exact Trace Validation

Hutchinson Train
Exact Trace Train

-30000 o

Results

5000 10000
Iteration (Number of Batches)
Feb 2021

15000

Conclusion

Exact Trace Computation

Our model

Neural Network
1
D(s;0) =w' N(s;0y)+ 5.sT(ATA).s +b's+ec,
where 0 = (w,0y,A,b,c)
Gradient
Vs®P(5;0) = VoN(s;0n)w+ (AT A)s+b
where
@ space-time inputs s = (x,t) € R+
e neural network N(s;0x): R — R™ (we choose ResNet)

@ 0O consists of all the trainable weights:
weR™, Oy c RP, Ac R™HD pc R, c€ R where 7 = min(10, d)

Feb 2021

Background Formulation Implementation Results Conclusion

Exact Trace Computation
Analytic Gradient and Trace Computation

N is an (M + 1)-layer ResNet

Forward propagation

Compute N(s;0n) = uyy. where
o fixed step size h > 0
ug = 0(Kos + by) @ ResNet weights O are

» Ko € Rmx(d+1)

» Ki,..., Ky € Rm*™

: ; » by,...,bpr €R™

unr = upr—1 + ho(Kyrunr—1 + bar) e o(x) =log(exp(x) + exp(—x))

» the antiderivative of hyperbolic tangent
» so, o/(x) = tanh(x)

u; = Ug +hO'(K1UO +b1)

Results Conclusion Feb 2021

Implementation

Background Formulation

Exact Trace Computation
Analytic Gradient Computation

N is an (M + 1)-layer ResNet

Forward propagation Backpropagation (chain rule)
Compute N(s;0n) = uyy. Compute VN (s;0n)w = z(analytically
Laplacian
ug = o (Kos + by) Compute
= ho(K b
ur = uo +ho(Kyuo +by) tr (V20(s;0)) = tr (BT (V3(N(s:0x)w) + AT A) E)

for E =eye(d+1,d)

uy =up—1+ho(Kpyup—1+ b
M a1+ ho(K yrviag—1 + bu) with cost O(m? - d) FLOPS.

(details in paper)

Feb 2021

Background Formulation Implementation Results Conclusion

Other OT approaches in CNFs

Model Formulation Training Implementation Inference
ode

ODEs(2) ® L R ||Vv||% Solver DTO/OTD Trace Trace
FFJORD?!3 v X X X X RK(4)5 OTD Hutch w/ Rad AD exact
RNODE! v X v x / RK 4 OTD Hutch w/ Rad AD exact
M-A Flows!® v X XX RK 4 DTO Hutch w/ Gauss
PFGs!® v X/ X RK 1 DTO AD exact
OT-Flow v v v/ X RK 4 DTO efficient exact

RK: Runge-Kutta, OTD: optimize-then-discretize, DTO: discretize-then-optimize, AD: automatic
differentiation, Hutch: Hutchinson's trace estimator where € from Rademacher or Gaussian distribution

3Grathwohl et al. “FFJORD: Free-form Continuous Dynamics for Scalable Reversible...". 2019.

Finlay et al. "How to Train your Neural ODE: the World of Jacobian and Kinetic Regularization”. 2020.
15Zhang and Wang. “Monge-Ampére Flow for Generative Modeling”. 2018.
®Yang and Karniadakis. “Potential Flow Generator With Lo Optimal Transport Regularity...”. 2020.

Background

Formulation

Implementation

Results

Conclusion

Feb 2021

Fast Training
Training Time (hr)

—e— POWER, d=6
—»— GAS, d=8

150 OT-Flow has 8x training speed-up on average
—&— HEPMASS, d=21
—m— MINIBOONE,d=43 R
125 —— BSDS300, d=63 easons
@ OT-inspired regularization leads to straight
100 trajectories that are inexpensive to integrate.

@ Exact trace computation
75 » Competitive in time
» Better in convergence

50 @ The potential flows approach results in fewer
weights and a smaller model.

25

0

FFJORD RNODE OT-FLOW

Formulation Implementation Results Conclusion Feb 2021

Fast Inference

Testing Time (s)

104
103
102
1ol —®— POWER, d=6
—#— GAS, d=8
—— HEPMASS, d=21
—m— MINIBOONE,d=43
10°{ —— BSDS300, d=63
FFJORD RNODE OT-FLOW

OT-Flow has 24x testing speed-up on average

Reasons

@ Inference uses exact trace (no estimates)

» State-of-the-art approaches use AD to obtain exact
trace with O(d?)
» Meanwhile, our exact trace is O(d)

Background

Formulation Implementation Results Conclusion Feb 2021

More Results

Samples OT FIow FFJORD
xr ~ p()

ym

Two of the 43 dimensions in the MINIBOONE CNF

MNIST synthetic generation. Original
images boxed in red.

Feb 2021 22 /23

Conclusions

Formulation

@ CNF + OT = well-posed

o HJB regularizer reduces training costs
Implementation

@ Discretize-then-optimize + Runge-Kutta 4
= efficient ODE solve

e Efficient exact trace improves CNF training

@ Public Code
github.com/EmoryMLIP/0T-Flow

VA

Conclusion

z(z,0)

Feb 2021

A

23 / 23

References |

Bellman, Richard (1957). Dynamic Programming. Princeton University Press, Princeton, N. J.

Chen, Tian Qi et al. (2018). “Neural Ordinary Differential Equations”. In: Advances in Neural
Information Processing Systems, pp. 6571-6583.

Finlay, Chris et al. (2020). “How to Train your Neural ODE: the World of Jacobian and Kinetic
Regularization”. In: International Conference on Machine Learning (ICML).

Gholami, Amir, Kurt Keutzer, and George Biros (2019). “ANODE: Unconditionally Accurate
Memory-Efficient Gradients for Neural ODEs". In: International Joint Conferences on
Artificial Intelligence (IJCAI).

Grathwohl, Will et al. (2019). “FFJORD: Free-form Continuous Dynamics for Scalable
Reversible Generative Models”. In: International Conference on Learning Representations
(ICLR).

Hutchinson, Michael F (1990). “A Stochastic Estimator of the Trace of the Influence Matrix for

Laplacian Smoothing Splines”. In: Communications in Statistics-Simulation and
Computation 19.2, pp. 433-450.

References Feb 2021 24 /23

References |l

Onken, Derek and Lars Ruthotto (2020). “Discretize-Optimize vs. Optimize-Discretize for
Time-Series Regression and Continuous Normalizing Flows". [n: arXiv:2005.13420.

Papamakarios, George et al. (2019). “Normalizing Flows for Probabilistic Modeling and
Inference”. In: arXiv preprint arXiv:1912.02762.

Pontryagin, L. S. et al. (1962). The Mathematical Theory of Optimal Processes. Translated by
K. N. Trirogoff; edited by L. W. Neustadt. Interscience Publishers John Wiley & Sons, Inc.
New York-London, pp. viii+360.

Rezende, Danilo Jimenez and Shakir Mohamed (2015). “Variational Inference with Normalizing
Flows". In: International Conference on Machine Learning (ICML), pp. 1530-1538.

Yang, L. and G. E. Karniadakis (2020). “Potential Flow Generator With Ly Optimal Transport
Regularity for Generative Models". In: |[EEE Transactions on Neural Networks and Learning
Systems.

Zhang, Linfeng, Lei Wang, et al. (2018). “Monge-Ampére Flow for Generative Modeling”. In:
arXiv preprint arXiv:1809.10188.

References

Feb 2021 25 /23

	Background
	Formulation
	Implementation
	Results
	Conclusion
	Appendix

