
A Neural Network Approach
Applied to Multi-Agent Optimal Control

European Control Conference

June 2021

Derek Onken
Emory University
derekonken.com



Collaborators and Acknowledgments

Levon Nurbekyan
UCLA

Xingjian Li
Emory

Samy Wu Fung
UCLA

Lars Ruthotto
Emory

Stan Osher
UCLA

Funding:

Special thanks: Organizers and staff of IPAM Long Program MLP 2019 and NVIDIA.

Background Formulation Neural Networks Results Conclusion June 2021 2 / 22



Overview

Background
I Problem
I Pontryagin Maximum Principle (PMP)
I Hamilton–Jacobi–Bellman Partial Differential Equation (HJB)

Mathematical Formulation
I Shock-Robustness
I HJB Penalizers

Neural Networks (NNs)
I Model Formulation
I Numerics

Results
I Two-Agent Corridor Problem
I 150-Dimensional Swarm Trajectory Planning

Conclusion

Background Formulation Neural Networks Results Conclusion June 2021 3 / 22



Optimal Control (OC) Problem

Corridor Problem

Consider two centrally-controlled agents that
navigate through a corridor/valley between two hills
to fixed targets

Assume
We have control over the agents’ velocities
(the control)

Want
Shortest paths, e.g. the geodesics (optimality)
No collisions
Agents to reach targets at final time

Background Formulation Neural Networks Results Conclusion June 2021 4 / 22



Multi-Agent Formulation

Consider n agents initially at x1, . . . , xn ∈ Rq ⇒ x = (x1, . . . , xn) ∈ Rd

Agents follow trajectories zx(t) during time t ∈ [0, T ]

−2 0 2

−2

0

2

nt=8

−2 0 2

nt=16

−2 0 2

nt=24

−2 0 2

nt=25

−2 0 2

nt=32

−2 0 2

nt=40

−2 0 2

nt=50Ttime t

Initial Target Terminal Cost

zx(0) = x =


−2
−2

2
−2

 y =


2
2
−2

2

 G
(
zx(T )

)
=
α1

2
‖zx(T )−y‖2

agent 2

agent 1

for multiplier α1 ∈ R

Background Formulation Neural Networks Results Conclusion June 2021 5 / 22



Trajectories Governed by Differential Equation

The state zx depends on the control ux and previous state via the system

∂tzx(t) = f
(
t, zx(t),ux(t)

)
, zx(0) = x

= ux(t) (the velocity)
(1)

where
time t ∈ [0, T ]

initial state x ∈ Rd

admissible controls U ⊂ Ra

f : [0, T ]×Rd × U → Rd models the evolution of the state zx : [0, T ]→ Rd in response
to the control ux : [0, T ]→ U

For Corridor:

Background Formulation Neural Networks Results Conclusion June 2021 6 / 22



Running Cost

Running costs where zi and ui are the state and control for the ith agent, respectively
L
(
t, z(t),u(t)

)
= E

(
z(t),u(t)

)
+ α2Q

(
z(t),u(t)

)
+ α3W

(
z(t),u(t)

)
=

n∑
i=1

Ei
(
zi(t), ui(t)

)
+ α2

n∑
i=1

Qi
(
zi(t), ui(t)

)
+ α3

∑
j 6=i

Wij

(
zi(t), zj(t)

)

for multipliers α2, α3 ∈ R and
Ei is the energy of an agent,
Qi represents any obstacles or terrain,
Wij are the interaction costs between homogeneous agents i and j with radius r

Wij(zi, zj) =

{
exp

(
−‖zi−zj‖

2
2

2r2

)
, ‖zi − zj‖2 < 2r

0, otherwise

For Corridor: 1
2‖ui(t)‖

2 sum of Gaussians piecewise Gaussian repulsion

Background Formulation Neural Networks Results Conclusion June 2021 7 / 22



Optimal Control (OC) Problem

Goal: Find the control that incurs minimal cost1

Φ(t,x) = inf
ux

{∫ T

t
L
(
s, zx(s),ux(s)

)
ds+G

(
zx(T )

)}
(2)

Φ(t,x) ∈ R is the value function (i.e., optimal cost-to-go)
solution u∗x is the optimal control
optimal trajectory z∗x dictated by u∗x

1Fleming and Soner. Controlled Markov Processes and Viscosity Solutions. 2006.
Background Formulation Neural Networks Results Conclusion June 2021 8 / 22

Running Cost: L(s, ·) = E(·) + α2Q(·) + α3W (·)
Terminal Cost: G

(
zx(T )

)
= α1

2 ‖zx(T )− y‖2



Pontryagin Maximum Principle (PMP)
Existing Approach

Solve the forward-backward system2 for 0 ≤ t ≤ T
∂tz
∗
x(t) = −∇pH

(
t, z∗x(t),px(t)

)
,

∂tpx(t) = ∇xH
(
t, z∗x(t),px(t)

)
,

z∗x(0) = x, px(T ) = ∇G
(
z∗x(T )

)
,

(3)

where
Hamiltonian H(t,x,px) =
supux∈U {−px · f(t,x,ux)− L(t,x,ux)}
adjoint px : [0, T ]→ Rd

then notation-wise, we have u∗x(t) = u∗
(
t, z∗x(t),px(t)

)

Comments
Local solution method

I Solved for a single x
I For a new x, need to

resolve (3)

Solving the system is difficult
and depends on the initial guess
px(0) (if using a shooting
method)

2Pontryagin et al. The Mathematical Theory of Optimal Processes. 1962.
Background Formulation Neural Networks Results Conclusion June 2021 9 / 22



Pontryagin Maximum Principle (PMP)
Existing Approach

Solve the forward-backward system2 for 0 ≤ t ≤ T
∂tz
∗
x(t) = −∇pH

(
t, z∗x(t),px(t)

)
,

∂tpx(t) = ∇xH
(
t, z∗x(t),px(t)

)
,

z∗x(0) = x, px(T ) = ∇G
(
z∗x(T )

)
,

(3)

where
Hamiltonian H(t,x,px) =
supux∈U {−px · f(t,x,ux)− L(t,x,ux)}
adjoint px : [0, T ]→ Rd

then notation-wise, we have u∗x(t) = u∗
(
t, z∗x(t),px(t)

)

Comments
Local solution method

I Solved for a single x
I For a new x, need to

resolve (3)

Solving the system is difficult
and depends on the initial guess
px(0) (if using a shooting
method)

2Pontryagin et al. The Mathematical Theory of Optimal Processes. 1962.
Background Formulation Neural Networks Results Conclusion June 2021 9 / 22



Hamilton-Jacobi-Bellman (HJB)
Existing Approach

Solve the HJB PDE3

(also called dynamic programming equations){
−∂tΦ(t,x) = −H

(
t,x,∇Φ(t,x)

)
,

Φ(T,x) = G(x)
(4)

arises from correspondence
px(t) = ∇Φ

(
t, z∗x(t)

)
(5)

Comments
Global solution method

I Solved for all x
I For a new x, no recomputation

Need grids to solve (4), which
scale poorly to high-dimensions

3Bellman. Dynamic Programming. 1957.
Background Formulation Neural Networks Results Conclusion June 2021 10 / 22



Hamilton-Jacobi-Bellman (HJB)
Existing Approach

Solve the HJB PDE3

(also called dynamic programming equations){
−∂tΦ(t,x) = −H

(
t,x,∇Φ(t,x)

)
,

Φ(T,x) = G(x)
(4)

arises from correspondence
px(t) = ∇Φ

(
t, z∗x(t)

)
(5)

Comments
Global solution method

I Solved for all x
I For a new x, no recomputation

Need grids to solve (4), which
scale poorly to high-dimensions

3Bellman. Dynamic Programming. 1957.
Background Formulation Neural Networks Results Conclusion June 2021 10 / 22



Our Approach
Motivation

Want:
Semi-global solution method (from HJB)
⇒ one model useful for many initial conditions
⇒ method is robust to shocks/disturbances
High-dimensional (from PMP)
⇒ multi-agent problems provide high
dimensionality and are easy to visualize

Background Formulation Neural Networks Results Conclusion June 2021 11 / 22

Corridor Problem



Semi-Global Solution Method
Robust to Shocks

Want: semi-global Φ (value function)
How to obtain:

Solve for Hamiltonian H
Replace adjoint p with ∇Φ using (5)
Use initial states sampled from Gaussian distribution
Solve

min
Φ

E
x∼N (µ,Σ)

{∫ T

0
L
(
s, zx(s),ux(s)

)
ds + G

(
zx(T )

)}
s.t.
∂tzx(t) = −∇pH

(
t, zx(t),∇Φ(t, zx(t))

)
= −∇Φ(t, zx(t))

For Corridor

Background Formulation Neural Networks Results Conclusion June 2021 12 / 22

−4 −2 0 2 4

−4

−2

0

2

4

6
train agent 1
agent 1
train agent 2
agent 2

space bubble
target
shock

Example:

µ =


−2
−2

2
−2

 , Σ = I



Penalizers

Recall the HJB equations
−∂tΦ

(
t, zx(t)

)
= −H

(
t, zx(t),∇Φ(t, zx(t))

)
,

Φ
(
T, zx(T )

)
= G

(
zx(T )

)
Make penalizers

cHJt,x(t) =∫ t

0

∣∣∣ ∂sΦ(s, zx(s))−H
(
s, zx(s),∇Φ(s, zx(s))

) ∣∣∣ds
cHJfin,x =

∣∣Φ(T, zx(T )) − G(zx(T ))
∣∣

cHJgrad,x =
∣∣∇Φ(T, zx(T )) − ∇G(zx(T ))

∣∣

0 400 800 1200 1600 2000 2400
Iteration

103

104

+
G

HJfin
HJgrad

HJfin & HJgrad
HJt, HJfin, & HJgrad

Weight Decay
No Penalization

0 400 800 1200 1600 2000 2400
Iteration

10 2

10 1

100

G
/

1

HJfin
HJgrad

HJfin & HJgrad
HJt, HJfin, & HJgrad

Weight Decay
No Penalization

HJt penalizer ⇒ few time steps4,5

4Yang and Karniadakis. “Potential Flow Generator with L2 Optimal Transport . . . ”. 2020.
5Onken et al. “OT-Flow: Fast and Accurate Continuous Normalizing Flows via Optimal Transport”. 2021.

Background Formulation Neural Networks Results Conclusion June 2021 13 / 22
∫ Ld

t
+
G

G
/α

1

Empirically Effective in Training



Formulation
Rewrite time-integrals as part of the ODE

min
Φ

E
x∼N (µ,Σ)

cL,x(T ) +G(zx(T )) + β1cHJt,x(T ) + β2 cHJfin,x + β3 cHJgrad,x, (6)

subject to

∂t

 zx(t)

cL,x(t)

cHJt,x(t)

 =


−∇pH

(
t, zx(t),∇Φ(t, zx(t))

)
Lx(t)∣∣∣ ∂tΦ(t, zx(t))−H
(
t, zx(t),∇Φ(t, zx(t))

) ∣∣∣
 ,

 zx(0)

cL,x(0)

cHJt,x(0)

 =

x0
0

 .

where, by the envelope formula,
Lx(t) = ∇Φ(t, zx(t)) · ∇pH

(
t, zx(t),∇Φ(t, zx(t))

)
−H

(
t, zx(t),∇Φ(t, zx(t))

)
Scalars β1, β2, β3 are weighted multipliers (NN hyperparameters)

Background Formulation Neural Networks Results Conclusion June 2021 14 / 22



How do we solve this PDE-constrained optimization problem?

Blend Neural Networks and Differential Equations

Choose your buzzword: Neural ODEs, Physics-Informed Neural Networks, etc.

Background Formulation Neural Networks Results Conclusion June 2021 15 / 22



How do we solve this PDE-constrained optimization problem?

Blend Neural Networks and Differential Equations

Choose your buzzword: Neural ODEs, Physics-Informed Neural Networks, etc.

Background Formulation Neural Networks Results Conclusion June 2021 15 / 22



Our Network
A Brief Look Under the Hood

We parameterize the value function

with

Φ(s;θ) = w>N(s) +
1

2
s>(A>A)s+ b>s+ c, for θ = (w,A, b, c,K0,K1, b0, b1)

where N(s) = a0 + σ(K1a0 + b1),

a0 = σ(K0s+ b0),

and

space-time inputs s=(x, t) ∈ Rd+1

element-wise activation function σ(x) = log(exp(x) + exp(−x))

N(s) : Rd+1 → Rm is a residual neural network (ResNet)6

θ contains the trainable weights: w ∈ Rm, A ∈ R10×(d+1), b ∈ Rd+1, c∈R,
K0 ∈ Rm×(d+1), K1 ∈ Rm×m, and b0, b1 ∈ Rm.

6He et al. “Deep Residual Learning for Image Recognition”. 2016.
Background Formulation Neural Networks Results Conclusion June 2021 16 / 22



Our Network
A Brief Look Under the Hood

We parameterize the value function

with

Φ(s;θ) = w>N(s) +
1

2
s>(A>A)s+ b>s+ c, for θ = (w,A, b, c,K0,K1, b0, b1)

where N(s) = a0 + σ(K1a0 + b1),

a0 = σ(K0s+ b0),

and
space-time inputs s=(x, t) ∈ Rd+1

element-wise activation function σ(x) = log(exp(x) + exp(−x))

N(s) : Rd+1 → Rm is a residual neural network (ResNet)6

θ contains the trainable weights: w ∈ Rm, A ∈ R10×(d+1), b ∈ Rd+1, c∈R,
K0 ∈ Rm×(d+1), K1 ∈ Rm×m, and b0, b1 ∈ Rm.

6He et al. “Deep Residual Learning for Image Recognition”. 2016.
Background Formulation Neural Networks Results Conclusion June 2021 16 / 22



Our Network
A Brief Look Under the Hood

We parameterize the value function with

Φ(s;θ) = w>N(s) +
1

2
s>(A>A)s+ b>s+ c, for θ = (w,A, b, c,K0,K1, b0, b1)

where N(s) = a0 + σ(K1a0 + b1),

a0 = σ(K0s+ b0),

and
space-time inputs s=(x, t) ∈ Rd+1

element-wise activation function σ(x) = log(exp(x) + exp(−x))

N(s) : Rd+1 → Rm is a residual neural network (ResNet)6

θ contains the trainable weights: w ∈ Rm, A ∈ R10×(d+1), b ∈ Rd+1, c∈R,
K0 ∈ Rm×(d+1), K1 ∈ Rm×m, and b0, b1 ∈ Rm.

6He et al. “Deep Residual Learning for Image Recognition”. 2016.
Background Formulation Neural Networks Results Conclusion June 2021 16 / 22



Differential Equations

Recall: We are solving

min
Φ

E
x∼N (µ,Σ)

cL,x(T ) +G(zx(T )) + β1cHJt,x(T ) + β2 cHJfin,x + β3 cHJgrad,x,

subject to

∂t

 zx(t)

cL,x(t)

cHJt,x(t)

 =


−∇pH

(
t, zx(t),∇Φ(t, zx(t))

)
Lx(t)∣∣∣ ∂tΦ(t, zx(t))−H
(
t, zx(t),∇Φ(t, zx(t))

) ∣∣∣
 ,

 zx(0)

cL,x(0)

cHJt,x(0)

 ,=

x0
0

 .

Background Formulation Neural Networks Results Conclusion June 2021 17 / 22



Differential Equations

Which is the same as training the neural ODE

min
θ

E
x∼N (µ,Σ)

cL,x(T ) +G(zx(T )) + β1cHJt,x(T ) + β2 cHJfin,x + β3 cHJgrad,x,

subject to

∂t

 zx(t)

cL,x(t)

cHJt,x(t)

 = F
(
t, zx(t), ∇Φ(t, zx(t) ;θ)

)
,

 zx(0)

cL,x(0)

cHJt,x(0)

 ,=

x0
0

 .

Background Formulation Neural Networks Results Conclusion June 2021 17 / 22



Training and Numerics

Background Formulation Neural Networks Results Conclusion June 2021 18 / 22

Solving the Minimiziation / Training the Neural ODE:

Iterate through
1 Solve the ODE
2 Compute the loss function
3 Backpropagate
4 Update parameters θ



Training and Numerics

ODE solver:
Runge-Kutta 4 ⇒ efficient and accurate

Discretize-then-Optimize Approach:7,8

First, discretize the ODE at time points, then optimize over that discretization
As opposed to optimize-then-discretize, e.g., solve Karush-Kuhn-Tucker then discretize

7Gholaminejad, Keutzer, and Biros. “ANODE: Unconditionally Accurate Memory-Efficient . . . ”. 2019.
8Onken and Ruthotto. “Discretize-Optimize vs. Optimize-Discretize for Time-Series . . . ”. 2020.

Background Formulation Neural Networks Results Conclusion June 2021 18 / 22

Solving the Minimiziation / Training the Neural ODE:

Iterate through
1 Solve the ODE
2 Compute the loss function
3 Backpropagate
4 Update parameters θ



Training and Numerics

Loss / Objective Function:

J(θ) = E
x∼N (µ,Σ)

cL,x(T ) +G(zx(T )) + β1cHJt,x(T ) + β2 cHJfin,x + β3 cHJgrad,x

Background Formulation Neural Networks Results Conclusion June 2021 18 / 22

Solving the Minimiziation / Training the Neural ODE:

Iterate through
1 Solve the ODE
2 Compute the loss function
3 Backpropagate
4 Update parameters θ



Training and Numerics

Compute gradient with respect to parameters (chain rule)

Use automatic differentiation9 to compute ∇θJ

9Nocedal and Wright. Numerical Optimization. 2006.
Background Formulation Neural Networks Results Conclusion June 2021 18 / 22

Solving the Minimiziation / Training the Neural ODE:

Iterate through
1 Solve the ODE
2 Compute the loss function
3 Backpropagate
4 Update parameters θ



Training and Numerics

Use ADAM10

A stochastic subgradient method with momentum
Empirically, ADAM works well in noisy high-dimensional spaces

10Kingma and Ba. “Adam: A Method for Stochastic Optimization”. 2015.
Background Formulation Neural Networks Results Conclusion June 2021 18 / 22

Solving the Minimiziation / Training the Neural ODE:

Iterate through
1 Solve the ODE
2 Compute the loss function
3 Backpropagate
4 Update parameters θ



Results

Small Shock Large Shock
Background Formulation Neural Networks Results Conclusion June 2021 19 / 22



Baseline
Corridor

Discrete optimization approach via forward Euler

min
{u(k)}

G
(
z(nt)

)
+ h

nt−1∑
k=0

L
(
t(k), z(k),u(k)

)
s.t. z(k+1) = z(k) + h f

(
t(k), z(k),u(k)

)
,

z(0) = x

where h=T/nt. We use T=1 and nt=50.

This is a local approach, whereas the NN is global

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

4
baseline solution
 NN agent 1
 NN agent 2

space bubble
target

Background Formulation Neural Networks Results Conclusion June 2021 20 / 22

Running Cost: L(t, ·) = E(·) + α2Q(·) + α3W (·)
Terminal Cost: G(z) = α1

2 ‖z − y‖
2



Swarm Trajectory Planning

50 3-dimensional agents with obstacles11

11Hönig et al. “Trajectory Planning for Quadrotor Swarms”. 2018.
Background Formulation Neural Networks Results Conclusion June 2021 21 / 22



In Review

Want to solve
I High-Dimensional Control Problems
I Semi-Globally

Combine Pontryagin Maximum Principle
and Hamilton-Jacobi-Bellman approaches

Parameterize the value function Φ with a
neural network

Solve trajectory problem in 150 dimensions

Demonstrate shock-robustness

Other Work:
D Onken, L Nurbekyan, X Li, S Wu Fung,
S Osher, L Ruthotto
A Neural Network Approach for High-Dimensional
Optimal Control

Code: github.com/donken/NeuralOC
Simulations: imgur.com/a/eWr6sUb

Background Formulation Neural Networks Results Conclusion June 2021 22 / 22



References I

Bellman, Richard (1957). Dynamic Programming. Princeton University Press, Princeton, N. J.,
pp. xxv+342.

Fleming, Wendell H. and H. Mete Soner (2006). Controlled Markov Processes and Viscosity
Solutions. Second. Vol. 25. Stochastic Modelling and Applied Probability. Springer, New
York, pp. xviii+429. ISBN: 978-0387-260457; 0-387-26045-5.

Gholaminejad, Amir, Kurt Keutzer, and George Biros (2019). “ANODE: Unconditionally
Accurate Memory-Efficient Gradients for Neural ODEs”. In: International Joint Conference
on Artificial Intelligence (IJCAI), pp. 730–736.

He, Kaiming et al. (2016). “Deep Residual Learning for Image Recognition”. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778.

Hönig, Wolfgang et al. (2018). “Trajectory Planning for Quadrotor Swarms”. In: IEEE
Transactions on Robotics 34.4, pp. 856–869.

Kingma, Diederik P. and Jimmy Ba (2015). “Adam: A Method for Stochastic Optimization”.
In: International Conference on Learning Representations (ICLR).

References June 2021 23 / 22



References II

Nocedal, Jorge and Stephen Wright (2006). Numerical Optimization. Springer Science &
Business Media.

Onken, Derek and Lars Ruthotto (2020). “Discretize-Optimize vs. Optimize-Discretize for
Time-Series Regression and Continuous Normalizing Flows”. In: arXiv:2005.13420.

Onken, Derek et al. (2021). “OT-Flow: Fast and Accurate Continuous Normalizing Flows via
Optimal Transport”. In: AAAI Conference on Artificial Intelligence. Vol. 35. 10,
pp. 9223–9232.

Pontryagin, L. S. et al. (1962). The Mathematical Theory of Optimal Processes. Translated by
K. N. Trirogoff; edited by L. W. Neustadt. Interscience Publishers John Wiley & Sons, Inc.
New York-London, pp. viii+360.

Yang, Liu and George Em Karniadakis (2020). “Potential Flow Generator with L2 Optimal
Transport Regularity for Generative Models”. In: IEEE Transactions on Neural Networks and
Learning Systems.

References June 2021 24 / 22


	Background
	Formulation
	Neural Networks
	Results
	Conclusion
	Appendix

	anm0: 
	anm1: 
	anm2: 
	anm3: 
	anm4: 
	anm5: 


