
Intro To PDE-Based Neural Networks
Scientific Computing Seminar

Derek Onken1

Simion Novikov2 Eran Treister2 Eldad Haber3 Lars Ruthotto1

1Emory University

2Ben-Gurion University of the Negev

3University of British-Columbia

Apr 26, 2019

Overview

Continuous ResNet
I Discrete Neural Networks viewed in continuous framework

Discretize-Optimize in network layers
I Develop state and control layers (borrowing from optimal control)
I Contrast with typical approach of 1-to-1 layers and weights (each layer

has its own weights)

Goal: Decouple the time discretizations of the features and the weights.
Does increasing parameters or layers improve convergence?

Motivation: Reduce network size (number of parameters) and complexity
to simplify training and hyperparameter tuning

Use Case: Image Classification

Continuous ResNet Discretize-Optimize References Apr 26, 2019 2 / 22

Brief History

Modelling Nervous Systems via Temporal Propositional
Functions

I Logical Calculus (McCulloch and Pitts, 1943)
Introduction of the Perceptron

I US Navy Press Conference (Rosenblatt, 1958)
However, single-layer perceptrons could not learn a simple XOR

I Perceptrons (Minsky and Papert, 1969)
Backpropogation

I Adjoint Method (more general) (Bliss, 1919)
I Applied Optimal Control (Bryson and Ho, 1969)
I Learning representation by back-propogating errors (Rumelhart,

Hinton, and Williams, 1986)

Continuous ResNet Discretize-Optimize References Apr 26, 2019 3 / 22

A Neural Network is a Discrete Universal Approximator
Consider this approximating model as a function:

c = f(y,θ)
where
y ∈ Rnf is an input item (e.g., an image of a dog)
c ∈ Rnc is the corresponding output (e.g., a class/label "dog")
θ ∈ Rnp are the parameters/weights of the model f

nf - number of features
nc - number of classes
np - number of parameters

Example: f
(
y,

[
vec(K1)
vec(K2)

])
= σ2 ◦K2 ◦ σ1 ◦K1y ,

where σ1 = σ2 = tanh

Continuous ResNet Discretize-Optimize References Apr 26, 2019 4 / 22

Vertically concatenate all n inputs and classes together:
0 255 255 255
0 | 255 128 255

255 y 128 128 0
255 | 128 0 0
255 0 0 0


 0.1 | 0.4 0.2 1

0.8 c 0.3 0.3 0
0.1 | 0.3 0.5 0


Y ∈ Rnf×n C ∈ Rnc×n

Neural network as a projection onto a manifold:

2

Motivation: Nonlinear Models

In general, impossible to find a linear separator between points

input features transformed features

Goal/Trick
Embed the point in higher dimension or move the points to
make them linearly separable

original features Y

2

Motivation: Nonlinear Models

In general, impossible to find a linear separator between points

input features transformed features

Goal/Trick
Embed the point in higher dimension or move the points to
make them linearly separable

transformed features

Images from Ruthotto. Deep Neural Networks motivated by PDEs. 2018.
Continuous ResNet Discretize-Optimize References Apr 26, 2019 5 / 22

Single-Layer Example

b

y1

y2

...

ynf -1

ynf

z1

z2

...

zm

...

c1

cnc

Hidden layerInput layer Output

Features
Y ∈ Rnf×n

Weights (θ)
K ∈ Rm×nf

W ∈ Rnc×m

bias b ∈ R

Class
Probabilities
C ∈ Rnc×n

nc, # classes

nf , # features

n , # examples

Y

KY+b

Z=σ(KY+b)

WZ = C

argmax
i
ci

Continuous ResNet Discretize-Optimize References Apr 26, 2019 6 / 22

Compute the Loss

For some loss / error function E, compute the difference between the
predicted output C = f(Y,θ) and ground truth Cgt,

loss = E(S(C) , Cgt)

where

I softmax activation S(C) = diag
(

1

enc
eC

)
eC

I cross entropy E(C,Cgt) = −trace(Cgt log(C
>))

eC and log(C) are element-wise and ei ∈ Ri contains all 1s.

Continuous ResNet Discretize-Optimize References Apr 26, 2019 7 / 22

Loss Details

Softmax:
Scale the output values c so they
represent percentages

S(ci) =
e ci∑nc
j=1 e

cj

Example:

c =

 0.6
1.0
2.0

 , S(c) ≈

 0.153
0.228
0.619


Cross Entropy:
Comparing probability distributions

E(c, cgt) = −cgt log(c>)

Matrix versions

S(C) = diag
(

1

enc e
C

)
eC

E(C,Cgt) = −trace(Cgt log(C
>))

Continuous ResNet Discretize-Optimize References Apr 26, 2019 8 / 22

Optimization Problem
Given some training set Y with corresponding ground truth outputs Cgt

and some “similar” testing set Ŷ with its ground truth outputs Ĉgt,

min
θ

E(S(f(Ŷ ,θ)) , Ĉgt) ,

but only by using the training set to tune θ:
argmin

θ
E(S(f(Y,θ)) , Cgt) +R(Y,θ)

with some regularizer R.

Visualizing the Loss Landscape of Neural Nets

Hao Li1, Zheng Xu1, Gavin Taylor2, Christoph Studer3, Tom Goldstein1

1University of Maryland, College Park 2United States Naval Academy 3Cornell University
{haoli,xuzh,tomg}@cs.umd.edu, taylor@usna.edu, studer@cornell.edu

Abstract

Neural network training relies on our ability to find “good” minimizers of highly
non-convex loss functions. It is well-known that certain network architecture
designs (e.g., skip connections) produce loss functions that train easier, and well-
chosen training parameters (batch size, learning rate, optimizer) produce minimiz-
ers that generalize better. However, the reasons for these differences, and their
effects on the underlying loss landscape, are not well understood. In this paper, we
explore the structure of neural loss functions, and the effect of loss landscapes on
generalization, using a range of visualization methods. First, we introduce a simple
“filter normalization” method that helps us visualize loss function curvature and
make meaningful side-by-side comparisons between loss functions. Then, using
a variety of visualizations, we explore how network architecture affects the loss
landscape, and how training parameters affect the shape of minimizers.

1 Introduction

Training neural networks requires minimizing a high-dimensional non-convex loss function – a
task that is hard in theory, but sometimes easy in practice. Despite the NP-hardness of training
general neural loss functions [2], simple gradient methods often find global minimizers (parameter
configurations with zero or near-zero training loss), even when data and labels are randomized before
training [42]. However, this good behavior is not universal; the trainability of neural nets is highly
dependent on network architecture design choices, the choice of optimizer, variable initialization, and
a variety of other considerations. Unfortunately, the effect of each of these choices on the structure of
the underlying loss surface is unclear. Because of the prohibitive cost of loss function evaluations
(which requires looping over all the data points in the training set), studies in this field have remained
predominantly theoretical.

(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter
normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.
32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

ar
X

iv
:1

71
2.

09
91

3v
3

 [c
s.L

G
]

7
N

ov
 2

01
8

Obstacles:
I high-dimensional
I non-convex
I not necessarily smooth
I f is stochastic in Y
I Y doesn’t fit ⇒ batches

Result:
Stochastic Gradient Descent

Images from Li et al. “Visualizing the loss landscape of neural nets”. 2018.
Continuous ResNet Discretize-Optimize References Apr 26, 2019 9 / 22

Image Classification

1000 classes

Slide by Ilya Kuzovkin.
Continuous ResNet Discretize-Optimize ReferencesApr 26, 2019 10 / 22

More Layers and "Deep Learning"

2012

8 layers
15.31% error

2013 2014 2015

9 layers, 2x params
11.74% error

19 layers
7.41% error

?
∞ layers
0% error

Slide by Ilya Kuzovkin.
Continuous ResNet Discretize-Optimize ReferencesApr 26, 2019 11 / 22

The Degradation Problem
Motivation for the Residual Neural Network (ResNet)1

Not caused by overfitting:

Degradation problem

“with the network depth increasing, accuracy gets saturated”

Slide by Ilya Kuzovkin.
1He et al. “Deep residual learning for image recognition”. 2016.

Continuous ResNet Discretize-Optimize ReferencesApr 26, 2019 12 / 22

Looking at Residual

Add explicit identity connections and “solvers
may simply drive the weights of the multiple

nonlinear layers toward zero”

is the true function we
want to learn

Let’s pretend we want to learn

instead.

The original function is then

Slide by Ilya Kuzovkin.
Continuous ResNet Discretize-Optimize ReferencesApr 26, 2019 13 / 22

ResNet

2012

8 layers
15.31% error

2013 2014 2015

9 layers, 2x params
11.74% error

19 layers
7.41% error

152 layers
3.57% error

Slide by Ilya Kuzovkin.
Continuous ResNet Discretize-Optimize ReferencesApr 26, 2019 14 / 22

No degradation & wins COCO and ImageNet awards

• 34-layer ResNet has lower training error.
This indicates that the degradation
problem is well addressed and we
manage to obtain accuracy gains from
increased depth.
!

• 34-layer-ResNet reduces the top-1 error
by 3.5%
!

• 18-layer ResNet converges faster and
thus ResNet eases the optimization by
providing faster convergence at the
early stage.

Slide by Ilya Kuzovkin.
Continuous ResNet Discretize-Optimize ReferencesApr 26, 2019 15 / 22

From Discrete to Continuous

These ResNets are just discrete forward Euler.1,2

View them continuously as the ordinary differential equation (ODE):
∂tu(t) = f(u(t),θ(t)), u(0) = y.

for state variable (features) u and control variable (weights) θ depending
on some artificial time t ∈ [0, T].

Now, we have ∞ layers!

We’ll say ti is a “layer” and u(ti) are the features output from the layer ti.

1Weinan. “A Proposal on Machine Learning via Dynamical Systems”. 2017.
2Haber and Ruthotto. “Stable Architectures for Deep Neural Networks”. 2017.

Continuous ResNet Discretize-Optimize ReferencesApr 26, 2019 16 / 22

Solving the ODE

argmin
θ

E(S(∂tu(t ;θ(t))) , Cgt) +R(Y,θ), u(0) = y

We choose Discretize-Optimize
Discretize u and θ. (ResNet uses same discretization for both).
Solve the optimization problem.

This Discretize-Optimize camp includes ANODE.3

Other camp: Optimize-Discretize (includes Neural ODEs 4)

3Gholami, Keutzer, and Biros. “ANODE: Unconditionally Accurate Memory-Efficient
Gradients for Neural ODEs”. 2019.

4Chen et al. “Neural ordinary differential equations”. 2018.
Continuous ResNet Discretize-Optimize ReferencesApr 26, 2019 17 / 22

Generalized framework inspired by ResNet
image

3x3 conv, 16, /2

pool, /2

3x3 conv, 16

3x3 conv, 16

3x3 conv, 16

3x3 conv, 16

3x3 conv, 32, /2

3x3 conv, 32

3x3 conv, 32

3x3 conv, 32

3x3 conv, 64, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

avg pool

fc 10

image

3x3 conv, 16, /2

pool, /2

3x3 conv, 16

3x3 conv, 16

3x3 conv, 16

3x3 conv, 16

3x3 conv, 32

pool, /2

3x3 conv, 32

3x3 conv, 32

3x3 conv, 32

3x3 conv, 32

3x3 conv, 64

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

avg pool

fc 10

image

3x3 conv, 3 → 16

Double Layer, 16
t = 0

Double Layer, 16
t = 1

3x3 conv, 16 → 32

pool, /2

Double Layer, 32
t = 0

Double Layer, 32
t = 1

3x3 conv, 32 → 64

pool, /2

Double Layer, 64
t = 0

Double Layer, 64
t = 1

avg pool

fc 10

image

Opening Layer
3 → 16

σ ◦ N ◦ K

Dynamic Block, 16

RK1 scheme
Double Layer
t = [0, 2]

hθ = hu = 1

Connecting Unit
16 → 32

P ◦ σ ◦ N ◦ K

Dynamic Block, 32

RK1 scheme
Double Layer
t = [0, 2]

hθ = hu = 1

Connecting Unit
32 → 64

P ◦ σ ◦ N ◦ K

Dynamic Block, 64

RK1 scheme
Double Layer
t = [0, 2]

hθ = hu = 1

avg pool

fc 10

Figure: Different Representations for ResNet14

Continuous ResNet Discretize-Optimize ReferencesApr 26, 2019 18 / 22

References I

Bliss, Go A (1919). “The use of adjoint systems in the problem of
differential corrections for trajectories”. In: JUS Artillery 51,
pp. 296–311.

Bryson, Arthur E. and Yu-Chi Ho (1969). Applied Optimal Control:
Optimization, Estimation, and Control. Waltham, MA: Blaisdell,
pp. 148–176.

Chen, Tian Qi et al. (2018). “Neural ordinary differential equations”. In:
Advances in Neural Information Processing Systems, pp. 6571–6583.

Gholami, Amir, Kurt Keutzer, and George Biros (2019). “ANODE:
Unconditionally Accurate Memory-Efficient Gradients for Neural ODEs”.
In: arXiv preprint arXiv:1902.10298.

Haber, Eldad and Lars Ruthotto (2017). “Stable Architectures for Deep
Neural Networks”. In: Inverse Probl. 34 (1).

He, Kaiming et al. (2016). “Deep residual learning for image recognition”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 770–778.

Continuous ResNet Discretize-Optimize ReferencesApr 26, 2019 19 / 22

References II
Li, Hao et al. (2018). “Visualizing the loss landscape of neural nets”. In:

Advances in Neural Information Processing Systems, pp. 6389–6399.
McCulloch, Warren S. and Walter H. Pitts (1943). “A logical calculus of

the ideas immanent in nervous activity”. In: The bulletin of
mathematical biophysics 5.4, pp. 115–133.

Minsky, Marvin and Seymour Papert (1969). Perceptrons: An lntroduction
to Computational Geometry. Cambridge, Massachusetts: MITPress.

Rosenblatt, Frank (1958). “The perceptron: a probabilistic model for
information storage and organization in the brain.” In: Psychological
review 65.6, p. 386.

Rumelhart, David E, Geoffrey E Hinton, and Ronald J Williams (1986).
“Learning representations by back-propagating errors”. In: Nature 323.9,
pp. 533–536.

Ruthotto, Lars (2018). Deep Neural Networks motivated by PDEs. URL:
www.math.emory.edu/{~}lruthot/talks/2018-DeepLearning-
handout.pdf.

Continuous ResNet Discretize-Optimize ReferencesApr 26, 2019 20 / 22

www.math.emory.edu/{~}lruthot/talks/2018-DeepLearning-handout.pdf
www.math.emory.edu/{~}lruthot/talks/2018-DeepLearning-handout.pdf

References III

Weinan, E. (2017). “A Proposal on Machine Learning via Dynamical
Systems”. In: Comm. Math. Statist. 5.1, pp. 1–11.

Continuous ResNet Discretize-Optimize ReferencesApr 26, 2019 21 / 22

Convolution Formalism
Assume input image y is a 4× 4 pixel RGB image, and convolutional
operator K will convert those 3 channels to 2 channels (no padding).

0

5

00

0-1

-1

-1

-1

-1

-2

-3

0

0

0 3

1

2

4 8 12 16

3 7 11 15

2 6 10 14

1 5 9 13

K y =

 yR

yG

yB




0 −1 0 −1 5 −1 0 −1 0
0 −1 0 −1 5 −1 0 −1 0

KG1 KB10 −1 0 −1 5 −1 0 −1 0
0 −1 0 −1 5 −1 0 −1 0

−3 −2 −1 0 0 0 3 2 1
−3 −2 −1 0 0 0 3 2 1

KG2 KB2−3 −2 −1 0 0 0 3 2 1
−3 −2 −1 0 0 0 3 2 1





1
...
16

yG

yB


= Ky

Continuous ResNet Discretize-Optimize ReferencesApr 26, 2019 22 / 22

	Continuous ResNet
	Discretize-Optimize

