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Overview

@ Continuous ResNet
» Discrete Neural Networks viewed in continuous framework
@ Discretize-Optimize in network layers

» Develop state and control layers (borrowing from optimal control)
» Contrast with typical approach of 1-to-1 layers and weights (each layer
has its own weights)

Goal: Decouple the time discretizations of the features and the weights.
Does increasing parameters or layers improve convergence?

Motivation: Reduce network size (number of parameters) and complexity
to simplify training and hyperparameter tuning

Use Case: Image Classification
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Brief History

Modelling Nervous Systems via Temporal Propositional
Functions

» Logical Calculus (McCulloch and Pitts, 1943)
Introduction of the Perceptron
» US Navy Press Conference (Rosenblatt, 1958)
However, single-layer perceptrons could not learn a simple XOR
» Perceptrons (Minsky and Papert, 1969)
Backpropogation
» Adjoint Method (more general) (Bliss, 1919)
» Applied Optimal Control (Bryson and Ho, 1969)

» Learning representation by back-propogating errors (Rumelhart,
Hinton, and Williams, 1986)
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A Neural Network is a Discrete Universal Approximator

Consider this approximating model as a function:
¢ = f(y7 9)
where
y € R"f is an input item (e.g., an image of a dog)
c € R" is the corresponding output (e.g., a class/label "dog")
6 € R" are the parameters/weights of the model f

n¢ - number of features
n. - number of classes
np - number of parameters

input layer
hidden layer 1 hidden layer 2
vec(K
Example: f <y7 [ VGCEK;; ]) =090 Kyo0010 K1y,

where 01 = 03 = tanh

Continuous ResNet Discretize-Optimize Apr 26, 2019 4 /22



Vertically concatenate all n inputs and classes together:

0 255 255 255
0 | 255 128 255 0.1 | 04 02 1

255 y 128 128 O 0.8 ¢ 03 03 O
255 | 128 0 0 0.1 | 03 05 0
255 0 0 0

Y e RW*" C e R"*"

Neural network as a projection onto a manifold:

original features Y transformed features

Images from Ruthotto. Deep Neural Networks motivated by PDEs. 2018.
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Single-Layer Example
Input layer Hidden layer Output

: \

n , # examples

ny, # features

ne, # classes n ‘
Features Yo
: arg max ¢;
Y E Rnfxn g i (4

Weights ()

K € Rmxns : /.

W € Riexm Yn -1
bias b € R %

Class Yng gy
Probabilities %

C € R
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Compute the Loss

For some loss / error function E, compute the difference between the
predicted output C' = f(Y,0) and ground truth Cy,

loss = E(S(C), Cqt)

where

1
» softmax activation S(C) = diag ( C) e
e, e
» cross entropy E(C,Cy;) = —trace( Cy; log(C'T))

e® and log(C) are element-wise and e; € R’ contains all 1s.

Continuous ResNet
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Loss Details
Matrix versions

Softmax:
Scale the output values ¢ so they
represent percentages

e’ 1
S(e) = == = di c
T S(C) = diag (enc ec) e

Example:

0.6 0.153
c=| 10|, S(c)~ | 0.228

2.0 0.619
Cross Entropy:
Comparing probability distributions

E(c,cq) = —cglog(ch) E(C,Cy) = —trace( Cyt log(C'T))
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Optimization Problem

Given some training set Y with corresponding ground truth outputs Cy;
and some “similar” testing set Y with its ground truth outputs Cy,

min - E(S(f(Y.0)), Cqt) .

but only by using the training set to tune 6:
argmein E(S(f(Y70))ant)+R(Y70)
with some regularizer R.

Obstacles:

high-dimensional
non-convex

not necessarily smooth
f is stochastic in Y

Y doesn't fit = batches

Result:

Stochastic Gradient Descent
Images from Li et al. “Visualizing the loss landscape of neural nets". 2018.
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() without skip connections (b) with skip connections
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Image Classification

IMAGENET

1000 classes

Slide by llya Kuzovkin.
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More Layers and "Deep Learning"
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The Degradation Problem

Motivation for the Residual Neural Network (ResNet)*

“‘with the network depth increasing, accuracy gets saturated”

Not caused by overfitting:

200 20,
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Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network

Slide by llya Kuzovkin.
"He et al. “Deep residual learning for image recognition”. 2016.
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Looking at Residual

Add explicit identity connections and “solvers

may simply drive the weights of the multiple
nonlinear layers toward zero”

H(x) is the true function we
want to learn

weight layer
weight layer

F(x) +x @

F(x)

X

identity
Let’s pretend we want to learn

F(x) := H(x) — x

Figure 2. Residual learning: a building block. instead.

The original function is then
F(x)+x
Slide by llya Kuzovkin.



ResNet
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No degradation & wins COCO and ImageNet awards

b - = === = -

plain-

error (%)

34-layer

0 10 40 50

0 30
iter. (led)

30 40 50
iter. (1e4)

Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to

their plain counterparts.

plain ResNet
18 layers 27.94 27.88
34 layers 28.54 25.03

Table 2. Top-1 error (%, 10-crop testing) on ImageNet validation.
Here the ResNets have no extra parameter compared to their plain
counterparts. Fig. 4 shows the training procedures.

Slide by llya Kuzovkin.

* 34-layer ResNet has lower training error.
This indicates that the degradation
problem is well addressed and we
manage to obtain accuracy gains from
increased depth.

34-layer-ResNet reduces the top-1 error

by 3.5%

18-layer ResNet con

thus ResNet eases the optimization by
providing faster convergence at the
early stage.
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From Discrete to Continuous

These ResNets are just discrete forward Euler.:2

View them continuously as the ordinary differential equation (ODE):

Opu(t) = f(u(t),0(t), u(0)=y.
for state variable (features) u and control variable (weights) 6 depending
on some artificial time ¢ € [0, 7.

Now, we have oo layers!

We'll say ¢; is a “layer” and u(t;) are the features output from the layer ¢;.

Weinan. “A Proposal on Machine Learning via Dynamical Systems”. 2017.
2Haber and Ruthotto. “Stable Architectures for Deep Neural Networks”. 2017.
EEE———



Solving the ODE

argmin - E(S(u(t;0(t))), Cge) + R(Y,0), u(0) =y

We choose Discretize-Optimize

o Discretize u and 6. (ResNet uses same discretization for both).
@ Solve the optimization problem.

This Discretize-Optimize camp includes ANODE.3

Other camp: Optimize-Discretize (includes Neural ODEs #)

3Gholami, Keutzer, and Biros. "ANODE: Unconditionally Accurate Memory-Efficient
Gradients for Neural ODEs". 2019.
“Chen et al. “Neural ordinary differential equations”. 2018.
P e T2
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Discretize-Optimize

Generalized framework inspired by ResNet
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Convolution Formalism

Assume input image y is a 4 x 4 pixel RGB image, and convolutional
operator K will convert those 3 channels to 2 channels (no padding).
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