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MOTIVATION

Figure 1: While a CNF can have curved
trajectories, OT-Flow’s are straight (mod-
ification of Fig. 1 in [3, 4]).

Continuous Normalizing Flows
A normalizing flow [1] is an invertible mapping f : Rd → Rd between
an arbitrary probability distribution and a standard normal distribution
whose densities we denote by ρ0 and ρ1, respectively.
By change of variables, the flow must approximately satisfy

log ρ0(x) = log ρ1(f(x)) + log |det∇f(x) | for all x ∈ Rd. (1)

In continuous normalizing flows (CNFs), f is obtained by solving the
neural ordinary differential equation (ODE) [2, 3]
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where, for artificial time t ∈ [0, T ],
• xmaps to f(x) = z(x, T ) following trajectory z : Rd × [0, T ]→ Rd

• dynamics are modeled by neural network layer v : Rd × [0, T ] → Rd

parameterized by weights θ
• `(x, T ) = log det∇f(x), derived from Jacobi’s Formula [2]

Microscale: an arbitrary sample xmaps to a normally distributed f(x)
Macroscale: ρ0 maps to ρ1

CNFs are trained by solving the optimization problem [1, 3]
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s.t. (2). (3)

High Training Costs
• Many functions evaluations are needed to solve (2)
• Using automatic differentiation (AD) to compute

the trace requires separate matrix-vector products
with the Jacobian and all d standard basis vectors,
costing O(d2) FLOPs in total

Our Contributions
Optimal Transport (OT) Incorporating OT, we regular-
ize the CNF so it has a unique solution (Figure 1).

Analytic Exact Trace We derive formulae for an exact
trace computation with complexity O(d) FLOPs.
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EXACT TRACE

Exploit tr
(
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)
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)

for E = eye(d+1,d). Details in Links.

In runtime, exact trace is competitive with estimators used in other CNFs.
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OPTIMAL TRANSPORT
L2 Transport Costs Add transport costs

L(x, T ) =

∫ T

0

1

2
‖v(z(x, t), t)‖2 dt. (4)

to (3) to penalize the arc-length of the trajectories.

Potential Function By the Pontryagin maximum
principle [5], there exists a scalar potential function
Φ: Rd × [0, T ]→ R such that

v(x, t;θ) = −∇Φ(x, t;θ).

Idea: Analogous to classical physics, samples move to
minimize their potential
⇒We parameterize potential Φ instead of v.

HJB Regularizer At optimality, Φ satisfies the
Hamilton-Jacobi-Bellman (HJB) equation [6]

−∂tΦ(x, t) +
1

2
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To penalize sub-optimality, use HJB regularizer
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OT-Flow Optimization Problem

min
θ

Eρ0(x)

{
C(x, T )+L(x, T )+R(x, T )

}
s.t. (2), (4), (5)

RESULTS
Two-dimensional Toy Density Estimation

Data Estimate Generation

19x speedup in training and 28x speedup in inference
relative to the state-of-the-art FFJORD [3] on five real
datasets of dimensionality d = 6, 8, 21, 43, 63

MNIST Synthetic Generationred boxed values are original; others are interpolated in rho_1 space

Encoder B : R784 → R128,
Decoder D : R128 → R784

such that D(B(x)) ≈ x

Train OT-Flow map-
ping samples B(x) to
N (0, I128)

For two MNIST images x1,x2 ∈ R784, interpolate in
the latent space to create synthetic image

y(λ) = D(f−1(λf(B(x1)) + (1− λ)f(B(x2)))).

Original images are boxed in red.

LINKS
Corresponding Paper Preprint:

arxiv.org/abs/2006.00104

PyTorch implementation is available on Emory’s Ma-
chine Learning and Inverse Problems repository:

github.com/EmoryMLIP/OT-Flow
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