

MOTIVATION

Continuous Normalizing Flows

A normalizing flow [1] is an invertible mapping $f \colon \mathbb{R}^d \to \mathbb{R}^d$ between an arbitrary probability distribution and a standard normal distribution whose densities we denote by ρ_0 and ρ_1 , respectively.

By change of variables, the flow must approximately satisfy

 $\log \rho_0(\boldsymbol{x}) = \log \rho_1(f(\boldsymbol{x})) + \log |\det \nabla f(\boldsymbol{x})|$ for all $\boldsymbol{x} \in \mathbb{R}^d$.

In continuous normalizing flows (CNFs), f is obtained by solving the neural ordinary differential equation (ODE) [2, 3]

$$\partial_t \begin{bmatrix} \boldsymbol{z}(\boldsymbol{x},t) \\ \ell(\boldsymbol{x},t) \end{bmatrix} = \begin{bmatrix} \mathbf{v}(\boldsymbol{z}(\boldsymbol{x},t),t;\boldsymbol{\theta}) \\ \operatorname{tr}(\nabla \mathbf{v}(\boldsymbol{z}(\boldsymbol{x},t),t;\boldsymbol{\theta})) \end{bmatrix}, \begin{bmatrix} \boldsymbol{z}(\boldsymbol{x},0) \\ \ell(\boldsymbol{x},0) \end{bmatrix} = \begin{bmatrix} \boldsymbol{x} \\ 0 \end{bmatrix}$$

where, for artificial time $t \in [0, T]$,

- \boldsymbol{x} maps to $f(\boldsymbol{x}) = \boldsymbol{z}(\boldsymbol{x}, T)$ following trajectory $\boldsymbol{z} \colon \mathbb{R}^d \times [0, T] \to \mathbb{R}^d$
- dynamics are modeled by neural network layer $\mathbf{v} \colon \mathbb{R}^d \times [0, T] \to \mathbb{R}^d$ parameterized by weights θ
- $\ell(\boldsymbol{x}, T) = \log \det \nabla f(\boldsymbol{x})$, derived from Jacobi's Formula [2]

Microscale: an arbitrary sample x maps to a normally distributed f(x)**Macroscale:** ρ_0 maps to ρ_1

CNFs are trained by solving the optimization problem [1, 3]

$\min_{\boldsymbol{\theta}} \mathbb{E}_{\rho_0(\boldsymbol{x})} \left\{ C(\boldsymbol{x}, T) \coloneqq \frac{1}{2} \| \boldsymbol{z}(\boldsymbol{x}, T) \|^2 - \ell(\boldsymbol{x}, T) \right\}$

High Training Costs

- Many functions evaluations are needed to solve (2)
- Using automatic differentiation (AD) to compute the trace requires separate matrix-vector products with the Jacobian and all *d* standard basis vectors, costing $\mathcal{O}(d^2)$ FLOPs in total

REFERENCES

- [1] D Rezende and S Mohamed Variational Inference with Normalizing Flows. ICML, 2015.
- [2] Chen et al. Neural Ordinary Differential Equations. NeurIPS, 2018.
- [3] W Grathwohl et al. FFJORD: Free-form continuous dynamics for scalable reversible generative models. ICLR, 2019.
- [4] C Finlay et al. How to train your neural ODE. arXiv:2002.02798, 2020.
- [5] L Evans An Introduction to Mathematical Optimal Control Theory Version 0.2. 2013.
- [6] L Evans Partial differential equations and Monge-Kantorovich mass transfer. Current developments in mathematics, 1997.

Our Contributions

(s)

Runt

Optimal Transport (OT) Incorporating OT, we regularize the CNF so it has a unique solution (Figure 1).

Analytic Exact Trace We derive formulae for an exact trace computation with complexity $\mathcal{O}(d)$ FLOPs.

OT-FLOW: OPTIMAL TRANSPORT FOR CONTINUOUS NORMALIZING FLOWS DEREK ONKEN[§], SAMY WU FUNG[†], XINGJIAN LI[§], LARS RUTHOTTO[§]

[§]Departments of Mathematics and Computer Science at Emory University, [†]Department of Mathematics at UCLA

Figure 1: While a CNF can have curved trajectories, OT-Flow's are straight (modification of Fig. 1 in [3, 4]).

$$\left(+ \frac{d}{2} \log(2\pi) \right)$$
 s.t. (2).

 L_2 **Transport Costs** Add transport costs

$$L(\boldsymbol{x},T) =$$

to (3) to penalize the arc-length of the trajectories.

 $\Phi \colon \mathbb{R}^d \times [0,T] \to \mathbb{R}$ such that

$$\mathbf{v}(\boldsymbol{x}, t)$$

minimize their potential

HJB Regularizer At optimality, Φ satisfies the Hamilton-Jacobi-Bellman (HJB) equation [6]

$$\begin{split} -\partial_t \Phi(\boldsymbol{x},t) &+ \frac{1}{2} \| \nabla \Phi(\boldsymbol{z}(\boldsymbol{x},t),t) \|^2 = 0, \\ \Phi(\boldsymbol{x},T) &= G(\boldsymbol{x},T) \end{split}$$

where

$$G(\boldsymbol{z}(\boldsymbol{x},T)) = 1 + \log \left(\rho_0(\boldsymbol{x})\right) - \log \left(\rho_1(\boldsymbol{z}(\boldsymbol{x},T))\right) - \ell(\boldsymbol{x},T)$$

To penalize sub-optimality, use HJB regularizer

$$R(\boldsymbol{x},T) = \int_0^T \left| \partial_t \Phi(\boldsymbol{z}(\boldsymbol{x},t),t) - \frac{1}{2} \| \nabla \Phi(\boldsymbol{z}(\boldsymbol{x},t),t) \|^2 \right| \, \mathrm{d}t$$
(5)

OT-Flow Optimization Problem

$$\min_{\boldsymbol{\theta}} \mathbb{E}_{\rho_0(\boldsymbol{x})} \left\{ C(\boldsymbol{x}, T) + L(\boldsymbol{x}, T) + R(\boldsymbol{x}, T) \right\} \text{ s.t. (2), (4), (5)}$$

EXACT TRACE

(3)

Exploit tr $(\nabla^2 \Phi(\boldsymbol{s}; \boldsymbol{\theta})) = tr (\boldsymbol{E}^\top \nabla^2_{\boldsymbol{s}} \Phi(\boldsymbol{s}; \boldsymbol{\theta}) \boldsymbol{E})$ for $\boldsymbol{E} = eye (d+1, d)$. Details in Links.

In runtime, exact trace is competitive with estimators used in other CNFs.

OPTIMAL TRANSPORT

$$\int_0^T \frac{1}{2} \|\mathbf{v}(\boldsymbol{z}(\boldsymbol{x},t),t)\|^2 \,\mathrm{d}t. \tag{4}$$

Potential Function By the Pontryagin maximum principle [5], there exists a scalar potential function

$$(\boldsymbol{\theta}) = -\nabla \Phi(\boldsymbol{x}, t; \boldsymbol{\theta}).$$

Idea: Analogous to classical physics, samples move to

 \Rightarrow We parameterize potential Φ instead of v.

RESULTS

19x speedup in training and 28x speedup in inference relative to the state-of-the-art FFJORD [3] on five real datasets of dimensionality d = 6, 8, 21, 43, 63

MNIST Synthetic Generation

Encoder $B: \mathbb{R}^{784} \to \mathbb{R}^{128}$, Decoder $D: \mathbb{R}^{128} \to \mathbb{R}^{784}$ such that $D(B(\boldsymbol{x})) \approx \boldsymbol{x}$

Train

For two MNIST images $x_1, x_2 \in \mathbb{R}^{784}$, interpolate in the latent space to create synthetic image

$$\boldsymbol{y}(\lambda) = D(f^{-1}(\lambda f(\boldsymbol{B}(\boldsymbol{x}_1)) +$$

Original images are boxed in red.

LINKS

Corresponding Paper Preprint:

arxiv.org/abs/2006.00104

PyTorch implementation is available on Emory's Machine Learning and Inverse Problems repository:

github.com/EmoryMLIP/OT-Flow

ACKNOWLEDGMENTS

Emory Funding: National Science Foundation awards DMS 1522599 and CAREER DMS 1751636, Binational Science Foundation Grant 2018209, and NVIDIA Corporation

UCLA Funding: AFOSR MURI FA9550-18-1-0502, AFOSR Grant No. FA9550-18-1-0167, and ONR Grant No. N00014-18-1-2527.

Special Thanks: IPAM Long Program MLP 2019 organizers & staff

OT-Flow mapping samples $B(\boldsymbol{x})$ to $\mathcal{N}(0, \boldsymbol{I}_{128})$

 $(1-\lambda)f(B(\boldsymbol{x}_2)))).$