
OT-FLOW: OPTIMAL TRANSPORT FOR
CONTINUOUS NORMALIZING FLOWS

DEREK ONKEN§, SAMY WU FUNG†, XINGJIAN LI§, LARS RUTHOTTO§

§Departments of Mathematics and Computer Science at Emory University, †Department of Mathematics at UCLA

MOTIVATION

Figure 1: While a CNF can have curved
trajectories, OT-Flow’s are straight (mod-
ification of Fig. 1 in [3, 4]).

Continuous Normalizing Flows
A normalizing flow [1] is an invertible mapping f : Rd → Rd between
an arbitrary probability distribution and a standard normal distribution
whose densities we denote by ρ0 and ρ1, respectively.
By change of variables, the flow must approximately satisfy

log ρ0(x) = log ρ1(f(x)) + log |det∇f(x) | for all x ∈ Rd. (1)

In continuous normalizing flows (CNFs), f is obtained by solving the
neural ordinary differential equation (ODE) [2, 3]

∂t

[
z(x, t)
`(x, t)

]
=

[
v
(
z(x, t), t;θ

)
tr
(
∇v(z(x, t), t;θ)

)] , [
z(x, 0)
`(x, 0)

]
=

[
x
0

]
, (2)

where, for artificial time t ∈ [0, T],
• xmaps to f(x) = z(x, T) following trajectory z : Rd × [0, T]→ Rd

• dynamics are modeled by neural network layer v : Rd × [0, T] → Rd

parameterized by weights θ
• `(x, T) = log det∇f(x), derived from Jacobi’s Formula [2]

Microscale: an arbitrary sample xmaps to a normally distributed f(x)
Macroscale: ρ0 maps to ρ1

CNFs are trained by solving the optimization problem [1, 3]

min
θ

Eρ0(x)

{
C(x, T) :=

1

2
‖z(x, T)‖2 − `(x, T) +

d

2
log(2π)

}
s.t. (2). (3)

High Training Costs
• Many functions evaluations are needed to solve (2)
• Using automatic differentiation (AD) to compute

the trace requires separate matrix-vector products
with the Jacobian and all d standard basis vectors,
costing O(d2) FLOPs in total

Our Contributions
Optimal Transport (OT) Incorporating OT, we regular-
ize the CNF so it has a unique solution (Figure 1).

Analytic Exact Trace We derive formulae for an exact
trace computation with complexity O(d) FLOPs.

REFERENCES

[1] D Rezende and S Mohamed Variational Inference with Nor-
malizing Flows. ICML, 2015.

[2] Chen et al. Neural Ordinary Differential Equations. NeurIPS,
2018.

[3] W Grathwohl et al. FFJORD: Free-form continuous dynamics
for scalable reversible generative models. ICLR, 2019.

[4] C Finlay et al. How to train your neural ODE.
arXiv:2002.02798, 2020.

[5] L Evans An Introduction to Mathematical Optimal Control
Theory Version 0.2. 2013.

[6] L Evans Partial differential equations and Monge-Kantorovich
mass transfer. Current developments in mathematics, 1997.

EXACT TRACE

Exploit tr
(
∇2Φ(s;θ)

)
= tr

(
E>∇2

sΦ(s;θ)E
)

for E = eye(d+1,d). Details in Links.

In runtime, exact trace is competitive with estimators used in other CNFs.

1 10 20 30 43
10 3

10 2

10 1

100

Ru
nt

im
e

(s
)

(a) MINIBOONE, d=43

1 10 20 30 40 50 63
Number of Hutchinson Vectors

(b) BSDS300, d=63

1 200 400 600 784

(c) MNIST, d=784

0 250 500 750
Number of Hutchinson Vectors

10 2

10 1

Re
la

tiv
e

Er
ro

r

(d) Accuracy of Estimators
Hutchinson d=43
Hutchinson d=63
Hutchinson d=784
Exact

OPTIMAL TRANSPORT
L2 Transport Costs Add transport costs

L(x, T) =

∫ T

0

1

2
‖v(z(x, t), t)‖2 dt. (4)

to (3) to penalize the arc-length of the trajectories.

Potential Function By the Pontryagin maximum
principle [5], there exists a scalar potential function
Φ: Rd × [0, T]→ R such that

v(x, t;θ) = −∇Φ(x, t;θ).

Idea: Analogous to classical physics, samples move to
minimize their potential
⇒We parameterize potential Φ instead of v.

HJB Regularizer At optimality, Φ satisfies the
Hamilton-Jacobi-Bellman (HJB) equation [6]

−∂tΦ(x, t) +
1

2
‖∇Φ(z(x, t), t)‖2 = 0,

Φ(x, T) = G(x)

where

G(z(x, T)) = 1+log
(
ρ0(x)

)
−log

(
ρ1(z(x, T))

)
−`(x, T)

To penalize sub-optimality, use HJB regularizer

R(x, T) =

∫ T

0

∣∣∣∣∂tΦ(z(x, t), t)− 1

2
‖∇Φ(z(x, t), t)‖2

∣∣∣∣ dt

(5)

OT-Flow Optimization Problem

min
θ

Eρ0(x)

{
C(x, T)+L(x, T)+R(x, T)

}
s.t. (2), (4), (5)

RESULTS
Two-dimensional Toy Density Estimation

Data Estimate Generation

19x speedup in training and 28x speedup in inference
relative to the state-of-the-art FFJORD [3] on five real
datasets of dimensionality d = 6, 8, 21, 43, 63

MNIST Synthetic Generationred boxed values are original; others are interpolated in rho_1 space

Encoder B : R784 → R128,
Decoder D : R128 → R784

such that D(B(x)) ≈ x

Train OT-Flow map-
ping samples B(x) to
N (0, I128)

For two MNIST images x1,x2 ∈ R784, interpolate in
the latent space to create synthetic image

y(λ) = D(f−1(λf(B(x1)) + (1− λ)f(B(x2)))).

Original images are boxed in red.

LINKS
Corresponding Paper Preprint:

arxiv.org/abs/2006.00104

PyTorch implementation is available on Emory’s Ma-
chine Learning and Inverse Problems repository:

github.com/EmoryMLIP/OT-Flow

ACKNOWLEDGMENTS

Emory Funding: National Science Foundation awards DMS 1522599
and CAREER DMS 1751636, Binational Science Foundation Grant
2018209, and NVIDIA Corporation

UCLA Funding: AFOSR MURI FA9550-18-1-0502, AFOSR Grant No.
FA9550-18-1-0167, and ONR Grant No. N00014-18-1-2527.

Special Thanks: IPAM Long Program MLP 2019 organizers & staff

