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Overview

@ Background
» Problem
» Pontryagin Maximum Principle (PMP)
» Hamilton—Jacobi-Bellman Partial Differential Equation (HJB)
@ Mathematical Formulation
» Shock-Robustness
» HJB Penalizers
e Neural Networks (NNs)
» Model Formulation
» Numerics
@ Results

» 150-Dimensional Swarm Trajectory Planning
» Quadcopter with Complicated Dynamics

@ Conclusion
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Optimal Control (OC) Problem

Corridor Problem

Consider two centrally-controlled agents that
navigate through a corridor/valley between two hills
to fixed targets

Assume
@ We have control over the agents' velocities
(the control)

Want
@ Shortest paths, e.g. the geodesics (optimality)
@ No collisions
@ Agents to reach targets at final time

Background Formulation Neural Networks
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Multi-Agent Formulation

Consider n agents initially at z1,...,2, € R = x = (z1,...,2,) € R?

Agents follow trajectories z4(t) during time ¢ € [0, 7]

time ¢
.
Initial Target Terminal Cost
—2 } agent 1 2
0 == | v=| . G (za(D)) = S za(D) -y
} agent 2
- 2 for multiplier a; € R
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Trajectories Governed by Differential Equation

The state z, depends on the control u, and previous state via the system

Ohza(t) = f(t, z2(t), uz(t)), 22(0) ==
For Corridor: = uy(t) (the velocity)
where
e time ¢t € [0,7]
e initial state € R¢
@ admissible controls U C R®

o f:[0,7] x R x U — R? models the evolution of the state z,: [0,7] — R? in response
to the control ug: [0,7] — U
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Running Cost

Running costs where z; and wu; are the state and control for the ith agent, respectively

L(t,z(t),u(t)) = E(2(t),u(t)) +a2Q( (), u(t)) + asW (2(t), u(t))
= Ei(z(t),u —i-agZQZ zi(t),ui(t)) + as Y Wis(z(t), 2(1))

=1 \%/—/ i=1 %/—/ JAEG—
For Corridor: Sllui ()2 sum of Gaussians piecewise Gaussian repulsion
for multipliers az, a3 € R and
@ F; is the energy of an agent,
@ (); represents any obstacles or terrain,
e W;; are the interaction costs between homogeneous agents i and j with radius r
HZFZ;’II%)
exp (—157R) s — 2l < 2
Wij(2i, 2j) = { o

0, otherwise
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Optimal Control (OC) Problem  Running Cost: L(s,") = E(-) + a2Q(-) + asW ()
Terminal Cost: G(23(T)) = % 22(T) — y||?

Goal: Find the control that incurs minimal cost!

Uy

B(t,x) = inf {/tTL(s,zm(s),um(s)) ds + G(zm(T))} )

e O(t,x) € R is the value function (i.e., optimal cost-to-go)
@ solution u}, is the optimal control

e optimal trajectory z} dictated by u},

'Fleming and Soner. Controlled Markov Processes and Viscosity Solutions. 2006.
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Pontryagin Maximum Principle (PMP)

Existing Approach

Solve the forward-backward system? for 0 < ¢t < T
Oz (t) = —VpH (t,25(1), po(t)),
Ou(t) = VaH (1, 25(), o (1)), 3)
25(0) =@, py(T) = VG(=4(T)).
where
e Hamiltonian H(t,xz,p,) =
SUPy,cv {—Ps * f(t, T, us) — L(t, @, uz)}
e adjoint p,,: [0,7] — R
then notation-wise, we have u},(t) = u* (¢, 2% (t), p,(t))

2Pontryagin et al. The Mathematical Theory of Optimal Processes. 1962.
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Pontryagin Maximum Principle (PMP)

Existing Approach

Solve the forward-backward system? for 0 < ¢t < T
Oz (t) = —VpH (t,25(1), po(t)),
Ou(t) = VaH (1, 25(), o (1)), 3)
25(0) =@, py(T) = VG(=4(T)).
where
e Hamiltonian H(t,xz,p,) =
SUPy,cv {—Ps * f(t, T, us) — L(t, @, uz)}
e adjoint p,,: [0,7] — R
then notation-wise, we have u},(t) = u* (¢, 2% (t), p,(t))

2Pontryagin et al. The Mathematical Theory of Optimal Processes. 1962.

Results

Comments
@ Local solution method
» Solved for a single «
» For a new x, need to
resolve (3)
@ Solving the system is difficult
and depends on the initial guess
P, (0) (if using a shooting
method)

Conclusion Mar 3, 2021
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Hamilton-Jacobi-Bellman (HJB)

Existing Approach

Solve the HJB PDE3
(also called dynamic programming equations)

{—@@(t, z) = —H(t,z,Vo(t,x)),
O(T,z) = G(x)
arises from correspondence

P (t) = VO(t, 25,(t))

3Bellman. Dynamic Programming. 1957.

Background Formulation Neural Networks

(4)

(5)

Results

Conclusion

Mar 3, 2021

10 / 30



Hamilton-Jacobi-Bellman (HJB)

Existing Approach

Solve the HJB PDE3
(also called dynamic programming equations)

{—atcb(t, x) = —H(t,@, VO(t,x)),
(T, x) = G(x)
arises from correspondence

Py(t) = VO(t, 25(t))

3Bellman. Dynamic Programming. 1957.

Background Formulation Neural Networks

Comments
@ Global solution method
(4) » Solved for all @

» For a new @, no recomputation

@ Need grids to solve (4), which
(5) scale poorly to high-dimensions
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Our Approach

Motivation

Corridor Problem

Want:
@ Semi-global solution method (from HJB)
= one model useful for many initial conditions
= method is robust to shocks/disturbances
e High-dimensional (from PMP)

= multi-agent problems provide high
dimensionality and are easy to visualize
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6
Semi-Global Solution Method Lo o agentd [ shace bubble
Robust to Shocks 41 train agent 2 EEE shock
agent 2

Want: semi-global ® (value function) %] (o (@
How to obtain: o '

@ Solve for Hamiltonian H /

@ Replace adjoint p with V& using (5) ] v

@ Use initial states sampled from Gaussian distribution 4]

@ Solve

-4 -2 0 2 4

min B {/OTL(S,ZE(S),um(s))ds—i—G(zm(T))} Example:

® &~ N(1,X) )
s.t. = —g S
Ozz(t) = —VpH (t, 22(t), VO(t, 22(t)) = —VO(t, 24(t)) ;

For Corridor
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Penalizers Empirically Effective in Training

Hfin Hfin & Hgraa —— Weight Decay

104 eca
Hlgrag === HJ;, Hfin, & HJgrag —— No Penalization

Recall the HJB equations (-i
—0®(t, 22(t)) = —H(t, 22(t), VO(, 22(1))), %
(T, z5(T)) = G(22(T)) =

Make penalizers 10007

CHJt,x (t) =
t
J

(5, 22(s)) — H(s, 2a(5), VB(s, 2 (s ‘ds
)

CHIfin,x — ‘Q) T Z:B(T ) G( (T))‘
CHJgrad,x — ‘VQ) T, Za:(T)) - VG(Zm(T))‘ 0 400 800 1200 1600 2000 2400

Iteration

Hlfin Hjin & H)grad —— Weight Decay
—— Hlgrad == HJq, HJfin, & HJgrag —— No Penalization

G/aq

HJt penalizer = few time steps*®

“Yang and Karniadakis. “Potential Flow Generator with L, Optimal Transport...". 2020.
5Onken et al. “OT-Flow: Fast and Accurate Continuous Normalizing Flows via Optimal Transport”. 2020.
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Formulation

Rewrite time-integrals as part of the ODE

min  E  cLz(T)+ G(22(T)) + Bicagez(T) + B2 cHifine + 53 CHIgrad,a» (6)

e N (1,E)
subject to
Z:c(t) _va (t’ R (t)7 V(I)(t7 2z (t))) Zy (O) T
Oy CLx (t) = L (t) ) cLx(0) =
cryt .z (t) O O(t, z4(t)) — H(t, z2(t), VO(t, 22(1))) ‘ cngez(0) 0

where, by the envelope formula,
Lo(t) = V®(t, 22(t)) - VpH (t, 22(t), VO(t, 24(1))) — H (L, z2(t), VE(t, 22(1)))

Scalars (1, 2, B3 are weighted multipliers (NN hyperparameters)
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How do we solve this PDE-constrained optimization problem?
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How do we solve this PDE-constrained optimization problem?

Blend Neural Networks and Differential Equations

Choose your buzzword: Neural ODEs, Physics-Informed Neural Networks, etc.
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Neural Network (NN) Basics

Consider a parameterized function:
C=g(2;0)
where
z € R%is an input item (e.g., the state of the system)
C € R is the corresponding output (e.g., the value from @)
0 € R? are the parameters/weights of the model g

Think: Manifold Projection
58

Input Features Transformed (Hidden) Features Output
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Single-Layer Example
d - # features Input layer Hidden layer Output

\o

/

a:a(K z+b)

m - width

Features
z € R4

Weights (0)
K € Rmxd

w € R™
biasb ¢ R

Outputs
C e R

2
Nonlinearity o d Kz+b
tanh, sigmoid, etc. z
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Our Network
A Brief Look Under the Hood

We parameterize the value function

ag = O'(K()S + bo),

@ space-time inputs s=(x,t) € R+

®He et al. “Deep Residual Learning for Image Recognition”. 2016.
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Our Network
A Brief Look Under the Hood

We parameterize the value function

where N(s) = ao+ o(K1ap + by),

ag = O'(K()S + bo),
and

@ space-time inputs s=(x,t) € R+
o N(s): R — R™ is a residual neural network (ResNet)®

@ element-wise activation function o(x) = log(exp(zx) + exp(—x))

®He et al. “Deep Residual Learning for Image Recognition”. 2016.
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Our Network
A Brief Look Under the Hood

We parameterize the value function with
1
O(s;0) = wTN(s) + isT(ATA)s +b's+ec, for 0= (w,A,b,c,Ky Ki,bgy,b;)
where N(s) = ao+ o(K1ag + by),

ag = O'(K()S + bo),
and

@ space-time inputs s=(x,t) € R+
o N(s): R — R™ is a residual neural network (ResNet)®
@ element-wise activation function o(x) = log(exp(x) + exp(—x))

@ 0 contains the trainable weights: w € R™, A € R1I0x(d+) b e R, ceR,
Kye R+ K e R™ ™ and by, b; € R™.

%He et al. “Deep Residual Learning for Image Recognition”. 2016.
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Differential Equations

Recall: We are solving

min  E  cLz(T)+ G(22(T)) + Bicagez(T) + B2 cHifine + 53 CHIgrad,a»

® 2~N(uE)
subject to
2 (t) —VpH (t, z5(t), VO(t, 22(1))) 2(0) -
O | cLa) | = La(t) o | ewz(0) |,=10
cuna(®)  \|00(z2(0) ~ H(t2e(0). VO 20) || \ewne(©))  \0
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Differential Equations

Which is the same as training the neural ODE

min F cLa(T) + G(22(T)) + frcage,z(T) + B2 caifine + 53 CHIgrad @+

6 wNN(lu"z)
subject to
Zx (t) Zm(O) X
O CL,w(t) = F(t7 z93(t)7 V(I)(t’ zw(t) ) 0))7 CL,Z(O) ,2=10
CHJt,x (t) CHJt@(O) 0
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Training and Numerics

Solving the Minimiziation / Training the Neural ODE:

Iterate through
@ Solve the ODE
@ Compute the loss function
© Backpropagate
@ Update parameters 6
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Training and Numerics

Solving the Minimiziation / Training the Neural ODE:

Iterate through
@ Solve the ODE
©® Compute the loss function
© Backpropagate
@ Update parameters 6

ODE solver:
Runge-Kutta 4 = efficient and accurate
Discretize-then-Optimize Approach:’8
First, discretize the ODE at time points, then optimize over that discretization
As opposed to optimize-then-discretize, e.g., solve Karush-Kuhn-Tucker then discretize

"Gholaminejad, Keutzer, and Biros. "ANODE: Unconditionally Accurate Memory-Efficient...". 2019.
80nken and Ruthotto. “Discretize-Optimize vs. Optimize-Discretize for Time-Series...". 2020.
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Training and Numerics

Solving the Minimiziation / Training the Neural ODE:

Iterate through
© Solve the ODE
@ Compute the loss function
© Backpropagate
@ Update parameters 6

Loss / Objective Function:

J(0) = NI% 5 cLz(T) + G(22(T)) + Bicasta(T) + B2 cHIfin,z + B3 CHIgrad,z
mN lll’
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Training and Numerics

Solving the Minimiziation / Training the Neural ODE:

Iterate through
© Solve the ODE
©® Compute the loss function
© Backpropagate
@ Update parameters 6

Compute gradient with respect to parameters (chain rule)

Use automatic differentiation® to compute Vg.J

°Nocedal and Wright. Numerical Optimization. 2006.
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Training and Numerics

Solving the Minimiziation / Training the Neural ODE:

Iterate through
© Solve the ODE
©® Compute the loss function
© Backpropagate
@ Update parameters 6

Use ADAM10

A stochastic subgradient method with momentum

Empirically, ADAM works well in noisy high-dimensional spaces

OKingma and Ba. “Adam: A Method for Stochastic Optimization”. 2015.
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Results

6 6
train agent 1 [ space bubble train agent 1 [ space bubble
-8— agent 1l X target —-e— agent 1 X target
a train agent 2 El shock 4 train agent 2 I shock
agent 2

agent 2

—4 -2 0 2 4

Small Shock Large Shock
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Baseline Running Cost: L(t,-) = E(-) + a2Q(-) + asW(+)
Terminal Cost: G(z) = %tz — y||?

Corridor
4
—8— baseline solution 1 space bubble
. —o— NN agent1l x target
Discrete optimization approach via forward Euler 3 NN agent 2
ne—1
min 2 ) + h ( (k)>
st 20t = (k) 4 hf( 7z(k),u(k)),

20 = g
where h=T'/n;. We use T=1 and n;=50.

This is a local approach, whereas the NN is global
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Swap Experiments

Two agents swap positions with hard corridor!! -0 - 0 5 1

Twelve agents swap positions!?

Mylvaganam, Sassano, and Astolfi. “A Differential Game Approach to Multi-Agent Collision Avoidance”.
2017.
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Addressing Curse of Dimensionality!?

Setup:

o Take subproblems of the 12-agent swap
experiment (2, 3, 4, 5, and 6 pairs of agents)

@ Train the smallest NN we can that achieves a
fixed suboptimality (relative to baseline)

The number of parameters grows linearly with
problem dimension d

2Bellman. Dynamic Programming. 1957.

1000

800

600

400

NN Parameters

200

2000

(s)

ime

Training Ti

= = [ =
N ey (=)} o
o o o o
o o o o

1000

8 12 16 20 24
Problem Dimension d

8 12 16 20 24

Problem Dimension d
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Swarm Trajectory Planning

Flight Path Path From Side View

50 3-dimensional agents with obstacles'3

B3H5nig et al. “Trajectory Planning for Quadrotor Swarms”. 2018.
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Quadcopter Problem

More complicated dynamics™

Controls: thrust u, torques 7y,79,7,

T = v,
Y=y
Z =0,
Y =uvy
921)9
© =y

Uy = %f7(w70790)
i)y = %fs(%&@)

@¢:Tw
’0927’9
Vp = Ty

U, = % fo(0,0) — g

thrust u

yaw ¢
mg
where
fr(,0,¢)  =sin(y)sin(p) + cos(v) sin(f) cos(yp),
fs(,0,p) = —cos(¥)sin(p) + sin(v) sin(f) cos(p),
folb o) = cos() cos(p)-

M Carrillo et al. “Modeling the Quad-Rotor Mini-Rotorcraft”. 2013.

Background

Formulation

Neural Networks
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Quadcopter Comparison with Baseline

60

—— NNu —<— Baseline u
—— NN7, —< BaselineTty,
40 «— NN g ~— Baseline Ty
—— Baseline 14
20

Control

Sy

-20 \}N

2
-40
z
0 0.5 =1
Time (ny=50) -1
-2
NN
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Review

e Want to solve

» High-Dimensional Control Problems
» Semi-Globally

e Combine Pontryagin Maximum Principle and Hamilton-Jacobi-Bellman
approaches

o Parameterize the value function ® with a neural network

@ Solve trajectory problem in 150 dimensions

Solve quadcopter problem with complicated dynamics

o Demonstrate shock-robustness
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Conclusions

@ DO, L Nurbekyan, X Li, S Wu Fung,
S Osher, L Ruthotto
A Neural Network Approach Applied to

° Parameter|2|r!g o e Multi-Agent Optimal Control
= extrapolation capabilities arXiv:2011.04757, 2020
e HJB penalizers improve training Coming Soon:

@ DO, L Nurbekyan, X Li, S Wu Fung,
. . . S Osher, L Ruthotto
e Lagrangian coordinates (no grids) help A Neural Network Approach for High-Dimensional
Optimal Control
Code: github.com/EmoryMLIP/NeuralOC
Simulations: imgur.com/a/eWr6sUb

scalability

Conclusion Mar 3, 2021
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Future Work

@ More rigorous experiments with many 12-d quadcopters

@ Deployment on actual quadcopters

Flight Path

@ Combination with existing methods and sensors
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Future Work

@ More rigorous experiments with many 12-d quadcopters

@ Deployment on actual quadcopters

Flight Path

@ Combination with existing methods and sensors

Questions?
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