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Optimal Control (OC) Problem

Corridor Problem

Consider two centrally-controlled agents that
navigate through a corridor/valley between two hills
to fixed targets

Assume
We have control over the agents’ velocities
(the control)

Want
Shortest paths, e.g. the geodesics (optimality)
No collisions
Agents to reach targets at final time
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Multi-Agent Formulation

Consider n agents initially at x1, . . . , xn ∈ Rq ⇒ x = (x1, . . . , xn) ∈ Rd

Agents follow trajectories zx(t) during time t ∈ [0, T ]
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for multiplier α1 ∈ R
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Trajectories Governed by Differential Equation

The state zx depends on the control ux and previous state via the system

∂tzx(t) = f
(
t, zx(t),ux(t)

)
, zx(0) = x

= ux(t) (the velocity)
(1)

where
time t ∈ [0, T ]

initial state x ∈ Rd

admissible controls U ⊂ Ra

f : [0, T ]×Rd × U → Rd models the evolution of the state zx : [0, T ]→ Rd in response
to the control ux : [0, T ]→ U

For Corridor:
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Running Cost

Running costs where zi and ui are the state and control for the ith agent, respectively
L
(
t, z(t),u(t)

)
= E

(
z(t),u(t)

)
+ α2Q

(
z(t),u(t)

)
+ α3W

(
z(t),u(t)

)
=

n∑
i=1

Ei
(
zi(t), ui(t)

)
+ α2

n∑
i=1

Qi
(
zi(t), ui(t)

)
+ α3

∑
j 6=i

Wij

(
zi(t), zj(t)

)

for multipliers α2, α3 ∈ R and
Ei is the energy of an agent,
Qi represents any obstacles or terrain,
Wij are the interaction costs between homogeneous agents i and j with radius r

Wij(zi, zj) =

{
exp

(
−‖zi−zj‖

2
2

2r2

)
, ‖zi − zj‖2 < 2r

0, otherwise

For Corridor: 1
2‖ui(t)‖

2 sum of Gaussians piecewise Gaussian repulsion
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Optimal Control (OC) Problem

Goal: Find the control that incurs minimal cost1

Φ(t,x) = inf
ux

{∫ T

t
L
(
s, zx(s),ux(s)

)
ds+G

(
zx(T )

)}
(2)

Φ(t,x) ∈ R is the value function (i.e., optimal cost-to-go)
solution u∗x is the optimal control
optimal trajectory z∗x dictated by u∗x

1Fleming and Soner. Controlled Markov Processes and Viscosity Solutions. 2006.
Background Formulation Neural Networks Results Conclusion Mar 3, 2021 8 / 30

Running Cost: L(s, ·) = E(·) + α2Q(·) + α3W (·)
Terminal Cost: G

(
zx(T )

)
= α1
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Pontryagin Maximum Principle (PMP)
Existing Approach

Solve the forward-backward system2 for 0 ≤ t ≤ T
∂tz
∗
x(t) = −∇pH

(
t, z∗x(t),px(t)

)
,

∂tpx(t) = ∇xH
(
t, z∗x(t),px(t)

)
,

z∗x(0) = x, px(T ) = ∇G
(
z∗x(T )

)
,

(3)

where
Hamiltonian H(t,x,px) =
supux∈U {−px · f(t,x,ux)− L(t,x,ux)}
adjoint px : [0, T ]→ Rd

then notation-wise, we have u∗x(t) = u∗
(
t, z∗x(t),px(t)

)

Comments
Local solution method

I Solved for a single x
I For a new x, need to

resolve (3)

Solving the system is difficult
and depends on the initial guess
px(0) (if using a shooting
method)

2Pontryagin et al. The Mathematical Theory of Optimal Processes. 1962.
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Hamilton-Jacobi-Bellman (HJB)
Existing Approach

Solve the HJB PDE3

(also called dynamic programming equations){
−∂tΦ(t,x) = −H

(
t,x,∇Φ(t,x)

)
,

Φ(T,x) = G(x)
(4)

arises from correspondence
px(t) = ∇Φ

(
t, z∗x(t)

)
(5)

Comments
Global solution method

I Solved for all x
I For a new x, no recomputation

Need grids to solve (4), which
scale poorly to high-dimensions

3Bellman. Dynamic Programming. 1957.
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Our Approach
Motivation

Want:
Semi-global solution method (from HJB)
⇒ one model useful for many initial conditions
⇒ method is robust to shocks/disturbances
High-dimensional (from PMP)
⇒ multi-agent problems provide high
dimensionality and are easy to visualize
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Semi-Global Solution Method
Robust to Shocks

Want: semi-global Φ (value function)
How to obtain:

Solve for Hamiltonian H
Replace adjoint p with ∇Φ using (5)
Use initial states sampled from Gaussian distribution
Solve

min
Φ

E
x∼N (µ,Σ)

{∫ T

0
L
(
s, zx(s),ux(s)

)
ds + G

(
zx(T )

)}
s.t.
∂tzx(t) = −∇pH

(
t, zx(t),∇Φ(t, zx(t))

)
= −∇Φ(t, zx(t))

For Corridor
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Penalizers

Recall the HJB equations
−∂tΦ

(
t, zx(t)

)
= −H

(
t, zx(t),∇Φ(t, zx(t))

)
,

Φ
(
T, zx(T )

)
= G

(
zx(T )

)
Make penalizers

cHJt,x(t) =∫ t

0

∣∣∣ ∂sΦ(s, zx(s))−H
(
s, zx(s),∇Φ(s, zx(s))

) ∣∣∣ds
cHJfin,x =

∣∣Φ(T, zx(T )) − G(zx(T ))
∣∣

cHJgrad,x =
∣∣∇Φ(T, zx(T )) − ∇G(zx(T ))

∣∣

0 400 800 1200 1600 2000 2400
Iteration

103

104

+
G

HJfin
HJgrad

HJfin & HJgrad
HJt, HJfin, & HJgrad

Weight Decay
No Penalization

0 400 800 1200 1600 2000 2400
Iteration

10 2

10 1

100

G
/

1

HJfin
HJgrad

HJfin & HJgrad
HJt, HJfin, & HJgrad

Weight Decay
No Penalization

HJt penalizer ⇒ few time steps4,5

4Yang and Karniadakis. “Potential Flow Generator with L2 Optimal Transport . . . ”. 2020.
5Onken et al. “OT-Flow: Fast and Accurate Continuous Normalizing Flows via Optimal Transport”. 2020.
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Formulation
Rewrite time-integrals as part of the ODE

min
Φ

E
x∼N (µ,Σ)

cL,x(T ) +G(zx(T )) + β1cHJt,x(T ) + β2 cHJfin,x + β3 cHJgrad,x, (6)

subject to

∂t

 zx(t)

cL,x(t)

cHJt,x(t)

 =


−∇pH

(
t, zx(t),∇Φ(t, zx(t))

)
Lx(t)∣∣∣ ∂tΦ(t, zx(t))−H
(
t, zx(t),∇Φ(t, zx(t))

) ∣∣∣
 ,

 zx(0)

cL,x(0)

cHJt,x(0)

 =

x0
0

 .

where, by the envelope formula,
Lx(t) = ∇Φ(t, zx(t)) · ∇pH

(
t, zx(t),∇Φ(t, zx(t))

)
−H

(
t, zx(t),∇Φ(t, zx(t))

)
Scalars β1, β2, β3 are weighted multipliers (NN hyperparameters)
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How do we solve this PDE-constrained optimization problem?

Blend Neural Networks and Differential Equations

Choose your buzzword: Neural ODEs, Physics-Informed Neural Networks, etc.
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Neural Network (NN) Basics
Consider a parameterized function:

C = g(z;θ)
where
z ∈ Rd is an input item (e.g., the state of the system)
C ∈ R is the corresponding output (e.g., the value from Φ)
θ ∈ Rp are the parameters/weights of the model g

Think: Manifold Projection

2

Motivation: Nonlinear Models

In general, impossible to find a linear separator between points

input features transformed features

Goal/Trick
Embed the point in higher dimension or move the points to
make them linearly separable

2

Motivation: Nonlinear Models

In general, impossible to find a linear separator between points

input features transformed features

Goal/Trick
Embed the point in higher dimension or move the points to
make them linearly separable

Input Features Transformed (Hidden) Features Output
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Single-Layer Example

b

z1

z2

...

zd-1

zd

a1

a2

...

am

C

Hidden layerInput layer Output

Features
z ∈ Rd

Weights (θ)
K ∈ Rm×d
w ∈ Rm

bias b ∈ R

Outputs
C ∈ R

Nonlinearity σ
tanh, sigmoid, etc.

m - width

d - # features

z

Kz+b

a=σ(Kz+b)

w>a = C
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Our Network
A Brief Look Under the Hood

We parameterize the value function

with

Φ(s;θ) = w>N(s) +
1

2
s>(A>A)s+ b>s+ c, for θ = (w,A, b, c,K0,K1, b0, b1)

where N(s) = a0 + σ(K1a0 + b1),

a0 = σ(K0s+ b0),

and

space-time inputs s=(x, t) ∈ Rd+1

N(s) : Rd+1 → Rm is a residual neural network (ResNet)6

element-wise activation function σ(x) = log(exp(x) + exp(−x))

θ contains the trainable weights: w ∈ Rm, A ∈ R10×(d+1), b ∈ Rd+1, c∈R,
K0 ∈ Rm×(d+1), K1 ∈ Rm×m, and b0, b1 ∈ Rm.

6He et al. “Deep Residual Learning for Image Recognition”. 2016.
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Differential Equations

Recall: We are solving

min
Φ

E
x∼N (µ,Σ)

cL,x(T ) +G(zx(T )) + β1cHJt,x(T ) + β2 cHJfin,x + β3 cHJgrad,x,

subject to

∂t

 zx(t)

cL,x(t)

cHJt,x(t)

 =


−∇pH

(
t, zx(t),∇Φ(t, zx(t))

)
Lx(t)∣∣∣ ∂tΦ(t, zx(t))−H
(
t, zx(t),∇Φ(t, zx(t))

) ∣∣∣
 ,

 zx(0)

cL,x(0)

cHJt,x(0)

 ,=

x0
0

 .
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Differential Equations

Which is the same as training the neural ODE

min
θ

E
x∼N (µ,Σ)

cL,x(T ) +G(zx(T )) + β1cHJt,x(T ) + β2 cHJfin,x + β3 cHJgrad,x,

subject to

∂t

 zx(t)

cL,x(t)

cHJt,x(t)

 = F
(
t, zx(t), ∇Φ(t, zx(t) ;θ)

)
,

 zx(0)

cL,x(0)

cHJt,x(0)

 ,=

x0
0

 .
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Training and Numerics

Background Formulation Neural Networks Results Conclusion Mar 3, 2021 20 / 30

Solving the Minimiziation / Training the Neural ODE:

Iterate through
1 Solve the ODE
2 Compute the loss function
3 Backpropagate
4 Update parameters θ



Training and Numerics

ODE solver:
Runge-Kutta 4 ⇒ efficient and accurate

Discretize-then-Optimize Approach:7,8

First, discretize the ODE at time points, then optimize over that discretization
As opposed to optimize-then-discretize, e.g., solve Karush-Kuhn-Tucker then discretize

7Gholaminejad, Keutzer, and Biros. “ANODE: Unconditionally Accurate Memory-Efficient . . . ”. 2019.
8Onken and Ruthotto. “Discretize-Optimize vs. Optimize-Discretize for Time-Series . . . ”. 2020.
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Training and Numerics

Loss / Objective Function:

J(θ) = E
x∼N (µ,Σ)

cL,x(T ) +G(zx(T )) + β1cHJt,x(T ) + β2 cHJfin,x + β3 cHJgrad,x
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Training and Numerics

Compute gradient with respect to parameters (chain rule)

Use automatic differentiation9 to compute ∇θJ

9Nocedal and Wright. Numerical Optimization. 2006.
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Training and Numerics

Use ADAM10

A stochastic subgradient method with momentum
Empirically, ADAM works well in noisy high-dimensional spaces

10Kingma and Ba. “Adam: A Method for Stochastic Optimization”. 2015.
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Results

Small Shock Large Shock
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Baseline
Corridor

Discrete optimization approach via forward Euler

min
{u(k)}

G
(
z(nt)

)
+ h

nt−1∑
k=0

L
(
t(k), z(k),u(k)

)
s.t. z(k+1) = z(k) + h f

(
t(k), z(k),u(k)

)
,

z(0) = x

where h=T/nt. We use T=1 and nt=50.

This is a local approach, whereas the NN is global

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

4
baseline solution
 NN agent 1
 NN agent 2

space bubble
target
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Terminal Cost: G(z) = α1

2 ‖z − y‖
2



Swap Experiments

Two agents swap positions with hard corridor11

Twelve agents swap positions11

11Mylvaganam, Sassano, and Astolfi. “A Differential Game Approach to Multi-Agent Collision Avoidance”.
2017.
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Addressing Curse of Dimensionality12

Setup:
Take subproblems of the 12-agent swap
experiment (2, 3, 4, 5, and 6 pairs of agents)
Train the smallest NN we can that achieves a
fixed suboptimality (relative to baseline)

The number of parameters grows linearly with
problem dimension d

8 12 16 20 24
Problem Dimension d

200

400

600

800

1000

NN
 P

ar
am

et
er

s

8 12 16 20 24
Problem Dimension d

1000

1200

1400

1600

1800

2000

Tr
ai

ni
ng

 T
im

e 
(s

)

12Bellman. Dynamic Programming. 1957.
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Swarm Trajectory Planning

50 3-dimensional agents with obstacles13

13Hönig et al. “Trajectory Planning for Quadrotor Swarms”. 2018.
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Quadcopter Problem
More complicated dynamics14

Controls: thrust u, torques τψ,τθ,τϕ

ż = f(x,u) =⇒



ẋ = vx

ẏ = vy

ż = vz

ψ̇ = vψ

θ̇ = vθ

ϕ̇ = vϕ

v̇x = u
mf7(ψ, θ, ϕ)

v̇y = u
mf8(ψ, θ, ϕ)

v̇z = u
mf9(θ, ϕ)− g

v̇ψ = τψ

v̇θ = τθ

v̇ϕ = τϕ

mg

thrust u x

y

yaw ψ

pitch θ

roll ϕ

where
f7(ψ, θ, ϕ) = sin(ψ) sin(ϕ) + cos(ψ) sin(θ) cos(ϕ),

f8(ψ, θ, ϕ) = − cos(ψ) sin(ϕ) + sin(ψ) sin(θ) cos(ϕ),

f9(θ, ϕ) = cos(θ) cos(ϕ).

14Carrillo et al. “Modeling the Quad-Rotor Mini-Rotorcraft”. 2013.
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Quadcopter Comparison with Baseline

0 0.5 T=1
Time (nt = 50)

−40
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Review

Want to solve
I High-Dimensional Control Problems
I Semi-Globally

Combine Pontryagin Maximum Principle and Hamilton-Jacobi-Bellman
approaches

Parameterize the value function Φ with a neural network

Solve trajectory problem in 150 dimensions

Solve quadcopter problem with complicated dynamics

Demonstrate shock-robustness
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Conclusions

Parameterizing Φ
⇒ extrapolation capabilities

HJB penalizers improve training

Lagrangian coordinates (no grids) help
scalability

DO, L Nurbekyan, X Li, S Wu Fung,
S Osher, L Ruthotto
A Neural Network Approach Applied to
Multi-Agent Optimal Control
arXiv:2011.04757, 2020

Coming Soon:
DO, L Nurbekyan, X Li, S Wu Fung,
S Osher, L Ruthotto
A Neural Network Approach for High-Dimensional
Optimal Control

Code: github.com/EmoryMLIP/NeuralOC
Simulations: imgur.com/a/eWr6sUb

Background Formulation Neural Networks Results Conclusion Mar 3, 2021 29 / 30



Future Work

More rigorous experiments with many 12-d quadcopters

Deployment on actual quadcopters

Combination with existing methods and sensors

Questions?

Background Formulation Neural Networks Results Conclusion Mar 3, 2021 30 / 30



Future Work

More rigorous experiments with many 12-d quadcopters

Deployment on actual quadcopters

Combination with existing methods and sensors

Questions?

Background Formulation Neural Networks Results Conclusion Mar 3, 2021 30 / 30



References I

Bellman, Richard (1957). Dynamic Programming. Princeton University Press, Princeton, N. J.,
pp. xxv+342.

Carrillo, Luis Rodolfo García et al. (2013). “Modeling the Quad-Rotor Mini-Rotorcraft”. In:
Quad Rotorcraft Control. Springer, pp. 23–34.

Fleming, Wendell H. and H. Mete Soner (2006). Controlled Markov Processes and Viscosity
Solutions. Second. Vol. 25. Stochastic Modelling and Applied Probability. Springer, New
York, pp. xviii+429. ISBN: 978-0387-260457; 0-387-26045-5.

Gholaminejad, Amir, Kurt Keutzer, and George Biros (2019). “ANODE: Unconditionally
Accurate Memory-Efficient Gradients for Neural ODEs”. In: International Joint Conference
on Artificial Intelligence (IJCAI), pp. 730–736.

He, Kaiming et al. (2016). “Deep Residual Learning for Image Recognition”. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778.

Hönig, Wolfgang et al. (2018). “Trajectory Planning for Quadrotor Swarms”. In: IEEE
Transactions on Robotics 34.4, pp. 856–869.

References Mar 3, 2021 31 / 30



References II

Kingma, Diederik P. and Jimmy Ba (2015). “Adam: A Method for Stochastic Optimization”.
In: International Conference on Learning Representations (ICLR).

Mylvaganam, Thulasi, Mario Sassano, and Alessandro Astolfi (2017). “A Differential Game
Approach to Multi-Agent Collision Avoidance”. In: IEEE Transactions on Automatic Control
62.8, pp. 4229–4235.

Nocedal, Jorge and Stephen Wright (2006). Numerical Optimization. Springer Science &
Business Media.

Onken, Derek and Lars Ruthotto (2020). “Discretize-Optimize vs. Optimize-Discretize for
Time-Series Regression and Continuous Normalizing Flows”. In: arXiv:2005.13420.

Onken, Derek et al. (2020). “OT-Flow: Fast and Accurate Continuous Normalizing Flows via
Optimal Transport”. In: AAAI.

Pontryagin, L. S. et al. (1962). The Mathematical Theory of Optimal Processes. Translated by
K. N. Trirogoff; edited by L. W. Neustadt. Interscience Publishers John Wiley & Sons, Inc.
New York-London, pp. viii+360.

References Mar 3, 2021 32 / 30



References III

Yang, Liu and George Em Karniadakis (2020). “Potential Flow Generator with L2 Optimal
Transport Regularity for Generative Models”. In: IEEE Transactions on Neural Networks and
Learning Systems.

References Mar 3, 2021 33 / 30


	Background
	Formulation
	Neural Networks
	Results
	Conclusion
	Appendix

	anm0: 
	anm1: 
	anm2: 
	anm3: 
	anm4: 
	anm5: 
	anm6: 
	anm7: 


