A Neural Network Approach for High-Dimensional Optimal Control

OT and MFG Seminar March 24, 2021

Derek Onken Emory University derekonken.com

FOUNDED 1836

EMORY UNIVERSITY

Collaborators and Acknowledgments

Special thanks: Organizers and staff of IPAM Long Program MLP 2019 and NVIDIA.

Overview

• Background

- Problem
- Pontryagin Maximum Principle (PMP)
- Hamilton–Jacobi–Bellman Partial Differential Equation (HJB)

• Mathematical Formulation

- Shock-Robustness
- HJB Penalizers

• Neural Networks (NNs)

- Model Formulation
- Numerics

• Results

- 150-Dimensional Swarm Trajectory Planning
- Quadcopter with Complicated Dynamics

• Conclusion

Optimal Control (OC) Problem

Corridor Problem

Consider two *centrally-controlled* agents that navigate through a corridor/valley between two hills to fixed targets

Assume

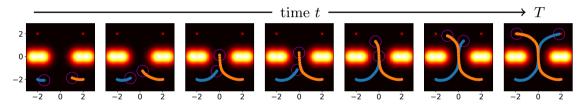
• We have control over the agents' velocities (the *control*)

Want

- Shortest paths, e.g. the geodesics (optimality)
- No collisions
- Agents to reach targets at final time

Multi-Agent Formulation

Consider *n* agents initially at $x_1, \ldots, x_n \in \mathbb{R}^q \Rightarrow \boldsymbol{x} = (x_1, \ldots, x_n) \in \mathbb{R}^d$ Agents follow trajectories $\boldsymbol{z}_{\boldsymbol{x}}(t)$ during time $t \in [0, T]$



$$\begin{array}{c|c} {\rm Initial} & {\rm Target} \\ {\boldsymbol z}_{\boldsymbol x}(0) = {\boldsymbol x} = \left[\begin{array}{c} -2 \\ -2 \\ 2 \\ -2 \end{array} \right] \right\rangle \begin{array}{c} {\rm agent \ 1} \\ {\rm agent \ 2} \end{array} \quad {\boldsymbol y} = \left[\begin{array}{c} 2 \\ 2 \\ -2 \\ 2 \end{array} \right]$$

Terminal Cost

$$G(\boldsymbol{z}_{\boldsymbol{x}}(T)) = \frac{\alpha_1}{2} \|\boldsymbol{z}_{\boldsymbol{x}}(T) - \boldsymbol{y}\|^2$$
for multiplier $\alpha_1 \in \mathbb{R}$

Trajectories Governed by Differential Equation

The state z_x depends on the control u_x and previous state via the system

$$\partial_t \boldsymbol{z}_{\boldsymbol{x}}(t) = f(t, \boldsymbol{z}_{\boldsymbol{x}}(t), \boldsymbol{u}_{\boldsymbol{x}}(t)), \quad \boldsymbol{z}_{\boldsymbol{x}}(0) = \boldsymbol{x}$$

= $\boldsymbol{u}_{\boldsymbol{x}}(t)$ (the velocity)

where

- time $t \in [0,T]$
- ullet initial state $oldsymbol{x} \in \mathbb{R}^d$

For Corridor:

- admissible controls $U \subset \mathbb{R}^a$
- $f: [0,T] \times \mathbb{R}^d \times U \to \mathbb{R}^d$ models the evolution of the state $\boldsymbol{z}_{\boldsymbol{x}}: [0,T] \to \mathbb{R}^d$ in response to the control $\boldsymbol{u}_{\boldsymbol{x}}: [0,T] \to U$

(1)

Running Cost

Running costs where z_i and u_i are the state and control for the *i*th agent, respectively $L(t, \boldsymbol{z}(t), \boldsymbol{u}(t)) = E(\boldsymbol{z}(t), \boldsymbol{u}(t)) + \alpha_2 Q(\boldsymbol{z}(t), \boldsymbol{u}(t)) + \alpha_3 W(\boldsymbol{z}(t), \boldsymbol{u}(t))$ $= \sum_{i=1}^{n} \underbrace{E_i(z_i(t), u_i(t))}_{i=1} + \alpha_2 \sum_{i=1}^{n} \underbrace{Q_i(z_i(t), u_i(t))}_{j\neq i} + \alpha_3 \sum_{j\neq i} \underbrace{W_{ij}(z_i(t), z_j(t))}_{j\neq i}$ For Corridor: $\frac{1}{2} ||u_i(t)||^2$ sum of Gaussians piecewise Gaussian repulsion

for multipliers $\alpha_2, \alpha_3 \in \mathbb{R}$ and

- E_i is the energy of an agent,
- Q_i represents any obstacles or terrain,
- W_{ij} are the interaction costs between homogeneous agents i and j with radius r

$$W_{ij}(z_i, z_j) = \begin{cases} \exp\left(-\frac{\|z_i - z_j\|_2^2}{2r^2}\right), & \|z_i - z_j\|_2 < 2r \\ 0, & \text{otherwise} \end{cases}$$

Mar 24, 2021

Optimal Control (OC) Problem

Running Cost: $L(s, \cdot) = E(\cdot) + \alpha_2 Q(\cdot) + \alpha_3 W(\cdot)$ Terminal Cost: $G(\boldsymbol{z}_{\boldsymbol{x}}(T)) = \frac{\alpha_1}{2} \|\boldsymbol{z}_{\boldsymbol{x}}(T) - \boldsymbol{y}\|^2$

Goal: Find the control that incurs minimal cost¹

$$\Phi(t, \boldsymbol{x}) = \inf_{\boldsymbol{u}_{\boldsymbol{x}}} \left\{ \int_{t}^{T} L(s, \boldsymbol{z}_{\boldsymbol{x}}(s), \boldsymbol{u}_{\boldsymbol{x}}(s)) \, \mathrm{d}s + G(\boldsymbol{z}_{\boldsymbol{x}}(T)) \right\}$$
(2)

- $\Phi(t, \boldsymbol{x}) \in \mathbb{R}$ is the value function (i.e., optimal cost-to-go)
- ullet solution $u^*_{m{x}}$ is the *optimal control*
- ullet optimal trajectory z^*_x dictated by u^*_x

¹Fleming and Soner. Controlled Markov Processes and Viscosity Solutions. 2006.

Background	Formulation	Neural Networks	Results	Conclusion	Mar 24, 2021	8 / 30
------------	-------------	-----------------	---------	------------	--------------	--------

Pontryagin Maximum Principle (PMP) Existing Approach

Solve the forward-backward system² for $0 \le t \le T$

$$\begin{cases} \partial_t \boldsymbol{z}_{\boldsymbol{x}}^*(t) = -\nabla_{\boldsymbol{p}} H(t, \boldsymbol{z}_{\boldsymbol{x}}^*(t), \boldsymbol{p}_{\boldsymbol{x}}(t)), \\ \partial_t \boldsymbol{p}_{\boldsymbol{x}}(t) = \nabla_{\boldsymbol{x}} H(t, \boldsymbol{z}_{\boldsymbol{x}}^*(t), \boldsymbol{p}_{\boldsymbol{x}}(t)), \\ \boldsymbol{z}_{\boldsymbol{x}}^*(0) = \boldsymbol{x}, \quad \boldsymbol{p}_{\boldsymbol{x}}(T) = \nabla G(\boldsymbol{z}_{\boldsymbol{x}}^*(T)), \end{cases}$$
(3)

where

• Hamiltonian
$$H(t, \boldsymbol{x}, \boldsymbol{p}_{\boldsymbol{x}}) =$$

$$\sup_{\boldsymbol{u}_{\boldsymbol{x}} \in U} \{-\boldsymbol{p}_{\boldsymbol{x}} \cdot f(t, \boldsymbol{x}, \boldsymbol{u}_{\boldsymbol{x}}) - L(t, \boldsymbol{x}, \boldsymbol{u}_{\boldsymbol{x}})\}$$
• adjoint $\boldsymbol{p}_{\boldsymbol{x}} \colon [0, T] \to \mathbb{R}^{d}$

then notation-wise, we have $\bm{u}^*_{\bm{x}}(t) = \bm{u}^*\big(t, \bm{z}^*_{\bm{x}}(t), \bm{p}_{\bm{x}}(t)\big)$

²Pontryagin et al. The Mathematical Theory of Optimal Processes. 1962.

Background	Formulation	Neural Networks	Results	Conclusion	Mar 24, 2021	9 / 30
------------	-------------	-----------------	---------	------------	--------------	--------

Pontryagin Maximum Principle (PMP) Existing Approach

Solve the forward-backward system 2 for $0 \leq t \leq T$

$$\begin{cases} \partial_t \boldsymbol{z}_{\boldsymbol{x}}^*(t) = -\nabla_{\boldsymbol{p}} H\big(t, \boldsymbol{z}_{\boldsymbol{x}}^*(t), \boldsymbol{p}_{\boldsymbol{x}}(t)\big), \\ \partial_t \boldsymbol{p}_{\boldsymbol{x}}(t) = \nabla_{\boldsymbol{x}} H\big(t, \boldsymbol{z}_{\boldsymbol{x}}^*(t), \boldsymbol{p}_{\boldsymbol{x}}(t)\big), \\ \boldsymbol{z}_{\boldsymbol{x}}^*(0) = \boldsymbol{x}, \quad \boldsymbol{p}_{\boldsymbol{x}}(T) = \nabla G\big(\boldsymbol{z}_{\boldsymbol{x}}^*(T)\big), \end{cases}$$

where

• Hamiltonian
$$H(t, \boldsymbol{x}, \boldsymbol{p}_{\boldsymbol{x}}) = \sup_{\boldsymbol{u}_{\boldsymbol{x}} \in U} \{-\boldsymbol{p}_{\boldsymbol{x}} \cdot f(t, \boldsymbol{x}, \boldsymbol{u}_{\boldsymbol{x}}) - L(t, \boldsymbol{x}, \boldsymbol{u}_{\boldsymbol{x}})\}$$

• adjoint $\boldsymbol{p}_{\boldsymbol{x}} \colon [0, T] \to \mathbb{R}^{d}$

then notation-wise, we have $m{u}^*_{m{x}}(t) = m{u}^*ig(t,m{z}^*_{m{x}}(t),m{p}_{m{x}}(t)ig)$

Comments

- Local solution method
 - \blacktriangleright Solved for a single x
 - ► For a new *x*, need to resolve (3)
 - Solving the system is difficult and depends on the initial guess $p_x(0)$ (if using a shooting method)

²Pontryagin et al. The Mathematical Theory of Optimal Processes. 1962.

Background

Formulation

Neural Networks

Results

(3)

Conclusion

Hamilton-Jacobi-Bellman (HJB) Existing Approach

Solve the HIB PDF³ (also called *dynamic programming* equations) $\begin{cases} -\partial_t \Phi(t, \boldsymbol{x}) = -H(t, \boldsymbol{x}, \nabla \Phi(t, \boldsymbol{x})), \\ \Phi(T, \boldsymbol{x}) = G(\boldsymbol{x}) \end{cases}$

arises from correspondence

$$\boldsymbol{p}_{\boldsymbol{x}}(t) = \nabla \Phi \big(t, \boldsymbol{z}_{\boldsymbol{x}}^*(t) \big)$$
(5)

³Bellman. Dynamic Programming. 1957. Formulation

Bac	kground	

(4)

Hamilton-Jacobi-Bellman (HJB) Existing Approach

Solve the HJB PDE³ (also called *dynamic programming* equations) $\begin{cases} -\partial_t \Phi(t, \boldsymbol{x}) = -H(t, \boldsymbol{x}, \nabla \Phi(t, \boldsymbol{x})), \\ \Phi(T, \boldsymbol{x}) = G(\boldsymbol{x}) \end{cases}$

arises from correspondence

$$\boldsymbol{p}_{\boldsymbol{x}}(t) = \nabla \Phi \big(t, \boldsymbol{z}_{\boldsymbol{x}}^*(t) \big)$$

Comments

- Global solution method
 - Solved for all x
 - For a new x, no recomputation
- Need grids to solve (4), which scale poorly to high-dimensions

³Bellman. Dynamic Programming. 1957.

Bac	kground

(4)

(5)

Conclusion

Our Approach

Corridor Problem

Want:

- Semi-global solution method (from HJB)
 - \Rightarrow one model useful for many initial conditions
 - \Rightarrow method is robust to shocks/disturbances
- High-dimensional (from PMP)

 \Rightarrow multi-agent problems provide high dimensionality and are easy to visualize

11 / 30

Semi-Global Solution Method Robust to Shocks

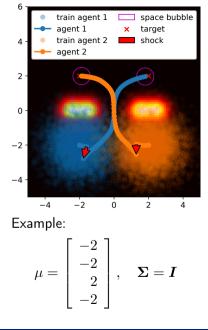
Want: semi-global Φ (value function) How to obtain:

- Solve for Hamiltonian H
- Replace adjoint p with $abla \Phi$ using (5)
- Use initial states sampled from Gaussian distribution
- Solve

$$\min_{\Phi} \mathop{\mathbb{E}}_{\boldsymbol{x} \sim \mathcal{N}(\mu, \boldsymbol{\Sigma})} \left\{ \int_{0}^{T} L(s, \boldsymbol{z}_{\boldsymbol{x}}(s), \boldsymbol{u}_{\boldsymbol{x}}(s)) \, \mathrm{d}s \, + \, G(\boldsymbol{z}_{\boldsymbol{x}}(T)) \right\}$$

$$\partial_t \boldsymbol{z}_{\boldsymbol{x}}(t) = -\nabla_{\boldsymbol{p}} H\big(t, \boldsymbol{z}_{\boldsymbol{x}}(t), \nabla \Phi(t, \boldsymbol{z}_{\boldsymbol{x}}(t))\big) = -\nabla \Phi(t, \boldsymbol{z}_{\boldsymbol{x}}(t))$$

For Corridor



Penalizers

Recall the HJB equations

$$\begin{split} &-\partial_t \Phi\big(t, \boldsymbol{z}_{\boldsymbol{x}}(t)\big) = -H\big(t, \boldsymbol{z}_{\boldsymbol{x}}(t), \nabla \Phi(t, \boldsymbol{z}_{\boldsymbol{x}}(t))\big), \\ &\Phi\big(T, \boldsymbol{z}_{\boldsymbol{x}}(T)\big) = G\big(\boldsymbol{z}_{\boldsymbol{x}}(T)\big) \end{split}$$

Make penalizers

HJt penalizer \Rightarrow few time steps^{4,5}

⁴Yang and Karniadakis. "Potential Flow Generator with L_2 Optimal Transport...". 2020. ⁵Onken et al. "OT-Flow: Fast and Accurate Continuous Normalizing Flows via Optimal Transport". 2020.

Background	Formulation	Neural Networks	Results	Conclusion	Mar 24, 2021	13 / 30

Empirically Effective in Training

Weight Decay

No Penalization

Weight Decay

2000

2400

HI_{fin} & HI_{arad}

Hlt, Hlfin, & Hlorad

Hlee

Hler

 10^{4}

 10^{0}

 $\int L dt + G$ 10³

Formulation

Rewrite time-integrals as part of the ODE

$$\min_{\Phi} \mathop{\mathbb{E}}_{\boldsymbol{x} \sim \mathcal{N}(\mu, \boldsymbol{\Sigma})} c_{\mathrm{L}, \boldsymbol{x}}(T) + G(\boldsymbol{z}_{\boldsymbol{x}}(T)) + \beta_1 c_{\mathrm{HJt}, \boldsymbol{x}}(T) + \beta_2 c_{\mathrm{HJfin}, \boldsymbol{x}} + \beta_3 c_{\mathrm{HJgrad}, \boldsymbol{x}}, \qquad (6)$$

subject to

$$\partial_t \begin{pmatrix} \boldsymbol{z}_{\boldsymbol{x}}(t) \\ c_{\mathrm{L},\boldsymbol{x}}(t) \\ c_{\mathrm{HJt},\boldsymbol{x}}(t) \end{pmatrix} = \begin{pmatrix} -\nabla_{\boldsymbol{p}} H\big(t, \boldsymbol{z}_{\boldsymbol{x}}(t), \nabla\Phi(t, \boldsymbol{z}_{\boldsymbol{x}}(t))\big) \\ L_{\boldsymbol{x}}(t) \\ \partial_t \Phi(t, \boldsymbol{z}_{\boldsymbol{x}}(t)) - H\big(t, \boldsymbol{z}_{\boldsymbol{x}}(t), \nabla\Phi(t, \boldsymbol{z}_{\boldsymbol{x}}(t))\big) \Big| \end{pmatrix}, \quad \begin{pmatrix} \boldsymbol{z}_{\boldsymbol{x}}(0) \\ c_{\mathrm{L},\boldsymbol{x}}(0) \\ c_{\mathrm{HJt},\boldsymbol{x}}(0) \end{pmatrix} = \begin{pmatrix} \boldsymbol{x} \\ 0 \\ 0 \end{pmatrix}$$
where by the envelope formula

by the envelope formula, where.

$$L_{\boldsymbol{x}}(t) = \nabla \Phi(t, \boldsymbol{z}_{\boldsymbol{x}}(t)) \cdot \nabla_{\boldsymbol{p}} H\big(t, \boldsymbol{z}_{\boldsymbol{x}}(t), \nabla \Phi(t, \boldsymbol{z}_{\boldsymbol{x}}(t))\big) - H\big(t, \boldsymbol{z}_{\boldsymbol{x}}(t), \nabla \Phi(t, \boldsymbol{z}_{\boldsymbol{x}}(t))\big)$$

Scalars $\beta_1, \beta_2, \beta_3$ are weighted multipliers (NN hyperparameters)

Background

.

How do we solve this PDE-constrained optimization problem?

15 / 30

How do we solve this PDE-constrained optimization problem?

Blend Neural Networks and Differential Equations

Choose your buzzword: Neural ODEs, Physics-Informed Neural Networks, etc.

Background

Neural Network (NN) Basics

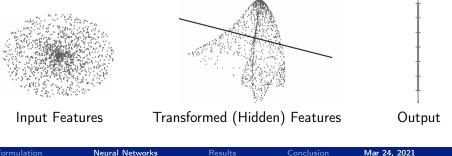
Consider a parameterized function:

 $C = q(\boldsymbol{z}; \boldsymbol{\theta})$

where

 $oldsymbol{z} \in \mathbb{R}^d$ is an input item (e.g., the state of the system) $C \in \mathbb{R}$ is the corresponding output (e.g., the value from Φ) $\boldsymbol{\theta} \in \mathbb{R}^p$ are the parameters/weights of the model g

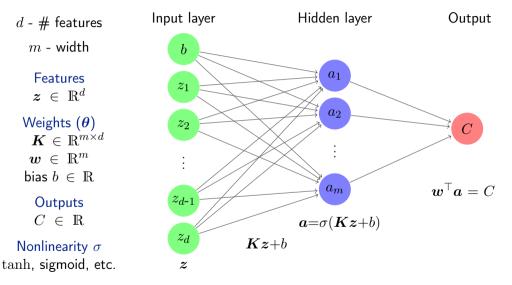
Think: Manifold Projection



16 / 30

Background

Single-Layer Example



Our Network A Brief Look Under the Hood

We parameterize the value function

$$\boldsymbol{a}_0 = \sigma(\boldsymbol{K}_0\boldsymbol{s} + \boldsymbol{b}_0),$$

• space-time inputs $oldsymbol{s}{=}(oldsymbol{x},t)\in\mathbb{R}^{d+1}$

⁶He et al. "Deep Residual Learning for Image Recognition". 2016.

Background	Formulation	Neural Networks	Results	Conclusion	Mar 24, 2021	18 / 30

Our Network A Brief Look Under the Hood

We parameterize the value function

where
$$N(s) = a_0 + \sigma(K_1a_0 + b_1),$$

 $a_0 = \sigma(K_0s + b_0),$

and

- space-time inputs ${m s}{=}({m x},t)\in {\mathbb R}^{d+1}$
- $N(s) \colon \mathbb{R}^{d+1} \to \mathbb{R}^m$ is a residual neural network (ResNet)⁶
- element-wise activation function $\sigma(x) = \log(\exp(x) + \exp(-x))$

⁶He et al. "Deep Residual Learning for Image Recognition". 2016.

Background	Formulation	Neural Networks	Results	Conclusion	Mar 24, 2021	18 / 30

Our Network A Brief Look Under the Hood

We parameterize the value function with

$$\begin{split} \Phi(\boldsymbol{s};\boldsymbol{\theta}) &= \boldsymbol{w}^{\top} N(\boldsymbol{s}) + \frac{1}{2} \boldsymbol{s}^{\top} (\boldsymbol{A}^{\top} \boldsymbol{A}) \boldsymbol{s} + \boldsymbol{b}^{\top} \boldsymbol{s} + c, \qquad \text{for} \quad \boldsymbol{\theta} = (\boldsymbol{w}, \boldsymbol{A}, \boldsymbol{b}, c, \boldsymbol{K}_0, \boldsymbol{K}_1, \boldsymbol{b}_0, \boldsymbol{b}_1) \\ \text{where } N(\boldsymbol{s}) &= \boldsymbol{a}_0 + \sigma(\boldsymbol{K}_1 \boldsymbol{a}_0 + \boldsymbol{b}_1), \\ \boldsymbol{a}_0 &= \sigma(\boldsymbol{K}_0 \boldsymbol{s} + \boldsymbol{b}_0), \end{split}$$

and

- space-time inputs ${m s}{=}({m x},t)\in {\mathbb R}^{d+1}$
- $N(s) \colon \mathbb{R}^{d+1} \to \mathbb{R}^m$ is a residual neural network (ResNet)⁶
- element-wise activation function $\sigma(x) = \log(\exp(x) + \exp(-x))$
- $\boldsymbol{\theta}$ contains the trainable weights: $\boldsymbol{w} \in \mathbb{R}^m$, $\boldsymbol{A} \in \mathbb{R}^{10 \times (d+1)}$, $\boldsymbol{b} \in \mathbb{R}^{d+1}$, $c \in \mathbb{R}$, $\boldsymbol{K}_0 \in \mathbb{R}^{m \times (d+1)}$, $\boldsymbol{K}_1 \in \mathbb{R}^{m \times m}$, and $\boldsymbol{b}_0, \boldsymbol{b}_1 \in \mathbb{R}^m$.

⁶He et al. "Deep Residual Learning for Image Recognition". 2016.

Background	Formulation	Neural Networks	Results	Conclusion	Mar 24, 2021	18 / 30

Differential Equations

Recall: We are solving

$$\min_{\Phi} \mathop{\mathbb{E}}_{\boldsymbol{x} \sim \mathcal{N}(\mu, \boldsymbol{\Sigma})} c_{\mathrm{L}, \boldsymbol{x}}(T) + G(\boldsymbol{z}_{\boldsymbol{x}}(T)) + \beta_1 c_{\mathrm{HJt}, \boldsymbol{x}}(T) + \beta_2 c_{\mathrm{HJfin}, \boldsymbol{x}} + \beta_3 c_{\mathrm{HJgrad}, \boldsymbol{x}},$$

subject to

$$\partial_t \begin{pmatrix} \boldsymbol{z}_{\boldsymbol{x}}(t) \\ c_{\mathrm{L},\boldsymbol{x}}(t) \\ c_{\mathrm{HJt},\boldsymbol{x}}(t) \end{pmatrix} = \begin{pmatrix} -\nabla_{\boldsymbol{p}} H\big(t, \boldsymbol{z}_{\boldsymbol{x}}(t), \nabla\Phi(t, \boldsymbol{z}_{\boldsymbol{x}}(t))\big) \\ L_{\boldsymbol{x}}(t) \\ | \partial_t \Phi(t, \boldsymbol{z}_{\boldsymbol{x}}(t)) - H\big(t, \boldsymbol{z}_{\boldsymbol{x}}(t), \nabla\Phi(t, \boldsymbol{z}_{\boldsymbol{x}}(t))\big) | \end{pmatrix}, \quad \begin{pmatrix} \boldsymbol{z}_{\boldsymbol{x}}(0) \\ c_{\mathrm{L},\boldsymbol{x}}(0) \\ c_{\mathrm{HJt},\boldsymbol{x}}(0) \end{pmatrix}, = \begin{pmatrix} \boldsymbol{x} \\ 0 \\ 0 \end{pmatrix}.$$

19 / 30

Differential Equations

Which is the same as training the neural ODE

$$\min_{\boldsymbol{\theta}} \mathop{\mathbb{E}}_{\boldsymbol{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})} c_{\mathrm{L}, \boldsymbol{x}}(T) + G(\boldsymbol{z}_{\boldsymbol{x}}(T)) + \beta_1 c_{\mathrm{HJt}, \boldsymbol{x}}(T) + \beta_2 c_{\mathrm{HJfin}, \boldsymbol{x}} + \beta_3 c_{\mathrm{HJgrad}, \boldsymbol{x}},$$

subject to

$$\partial_t \begin{pmatrix} \boldsymbol{z}_{\boldsymbol{x}}(t) \\ c_{\mathrm{L},\boldsymbol{x}}(t) \\ c_{\mathrm{HJt},\boldsymbol{x}}(t) \end{pmatrix} = F(t, \, \boldsymbol{z}_{\boldsymbol{x}}(t), \, \nabla \Phi(t, \boldsymbol{z}_{\boldsymbol{x}}(t); \boldsymbol{\theta})), \quad \begin{pmatrix} \boldsymbol{z}_{\boldsymbol{x}}(0) \\ c_{\mathrm{L},\boldsymbol{x}}(0) \\ c_{\mathrm{HJt},\boldsymbol{x}}(0) \end{pmatrix}, = \begin{pmatrix} \boldsymbol{x} \\ 0 \\ 0 \end{pmatrix}$$

.

Solving the Minimiziation / Training the Neural ODE:

Iterate through

- Solve the ODE
- ② Compute the loss function
- Backpropagate
- Opdate parameters θ

20 / 30

Solving the Minimiziation / Training the Neural ODE:

Iterate through

- Solve the ODE
- Compute the loss function
- Backpropagate
- Opdate parameters θ

ODE solver:

Runge-Kutta 4 \Rightarrow efficient and accurate

Discretize-then-Optimize Approach:^{7,8}

First, discretize the ODE at time points, then optimize over that discretization As opposed to optimize-then-discretize, e.g., solve Karush-Kuhn-Tucker then discretize

⁷Gholaminejad, Keutzer, and Biros. "ANODE: Unconditionally Accurate Memory-Efficient . . .". 2019. ⁸Onken and Ruthotto. "Discretize-Optimize vs. Optimize-Discretize for Time-Series . . .". 2020.

Background

Solving the Minimiziation / Training the Neural ODE:

Iterate through

- Solve the ODE
- ② Compute the loss function
- Backpropagate
- Opdate parameters θ

Loss / Objective Function:

$$J(\boldsymbol{\theta}) = \mathop{\mathbb{E}}_{\boldsymbol{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})} c_{\mathrm{L}, \boldsymbol{x}}(T) + G(\boldsymbol{z}_{\boldsymbol{x}}(T)) + \beta_1 c_{\mathrm{HJt}, \boldsymbol{x}}(T) + \beta_2 c_{\mathrm{HJfin}, \boldsymbol{x}} + \beta_3 c_{\mathrm{HJgrad}, \boldsymbol{x}}$$

Solving the Minimiziation / Training the Neural ODE:

Iterate through

- Solve the ODE
- 2 Compute the loss function
- Backpropagate
- Opdate parameters θ

Compute gradient with respect to parameters (chain rule)

Use automatic differentiation 9 to compute $\nabla_{\pmb{\theta}}J$

⁹Nocedal and Wright. *Numerical Optimization*. 2006.

Background	Formulation	Neural Networks	Results	Conclusion	Mar 24, 2021	20 / 30

Solving the Minimiziation / Training the Neural ODE:

Iterate through

- Solve the ODE
- Compute the loss function
- Backpropagate
- Opdate parameters heta

Use ADAM¹⁰

A stochastic subgradient method with momentum

Empirically, ADAM works well in noisy high-dimensional spaces

¹⁰Kingma and Ba. "Adam: A Method for Stochastic Optimization". 2015.

Background For	mulation Ne	eural Networks 🛛 🛛 🕅	lesults C	Conclusion	Mar 24, 2021	20 /	′ 30
----------------	-------------	----------------------	-----------	------------	--------------	------	------

Results

Small Shock

Background

Formulation

Neural Networks

Results

Conclus

Large Shock

Mar 24, 2021

21 / 30

Baseline Corridor

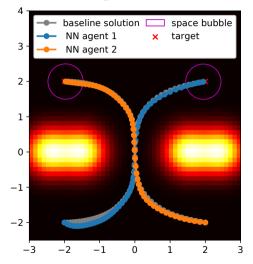
Discrete optimization approach via forward Euler

$$\begin{split} \min_{\{\boldsymbol{u}^{(k)}\}} & G\left(\boldsymbol{z}^{(n_t)}\right) + h \sum_{k=0}^{n_t-1} L\left(t^{(k)}, \boldsymbol{z}^{(k)}, \boldsymbol{u}^{(k)}\right) \\ \text{s.t.} & \boldsymbol{z}^{(k+1)} = \boldsymbol{z}^{(k)} + h f(t^{(k)}, \boldsymbol{z}^{(k)}, \boldsymbol{u}^{(k)}), \\ & \boldsymbol{z}^{(0)} = \boldsymbol{x} \end{split}$$

where $h=T/n_t$. We use T=1 and $n_t=50$.

This is a *local* approach, whereas the NN is global

Running Cost: $L(t, \cdot) = E(\cdot) + \alpha_2 Q(\cdot) + \alpha_3 W(\cdot)$ Terminal Cost: $G(\boldsymbol{z}) = \frac{\alpha_1}{2} \|\boldsymbol{z} - \boldsymbol{y}\|^2$



Results

Swap Experiments

Two agents swap positions with hard corridor¹¹

Twelve agents swap positions¹¹

¹¹Mylvaganam, Sassano, and Astolfi. "A Differential Game Approach to Multi-Agent Collision Avoidance". 2017.

Background

Addressing Curse of Dimensionality¹²

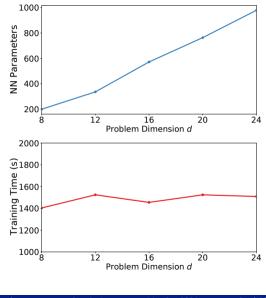
Setup:

Background

- Take subproblems of the 12-agent swap experiment (2, 3, 4, 5, and 6 pairs of agents)
- Train the smallest NN we can that achieves a fixed suboptimality (relative to baseline)

Neural Networks

The number of parameters grows linearly with problem dimension d



¹²Bellman. Dynamic Programming. 1957. Formulation

Results	Conclusion	Mar 24, 2021	24 / 30
---------	------------	--------------	---------

Swarm Trajectory Planning

50 3-dimensional agents with obstacles¹³

¹³Hönig et al. "Trajectory Planning for Quadrotor Swarms". 2018.

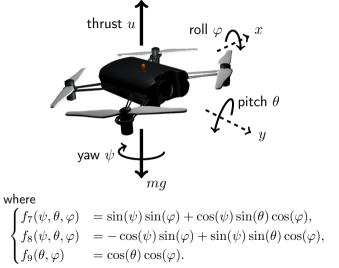
Background Formulation Neural Networks	Results	Conclusion	Mar 24, 2021	25 / 30
--	---------	------------	--------------	---------

Quadcopter Problem

More complicated dynamics¹⁴

Controls: thrust u, torques $\tau_{\psi}, \tau_{\theta}, \tau_{\varphi}$

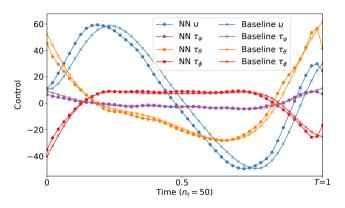
$$\dot{\boldsymbol{z}} = f(\boldsymbol{x}, \boldsymbol{u}) \implies \begin{cases} \dot{\boldsymbol{x}} = v_{\boldsymbol{x}} \\ \dot{\boldsymbol{y}} = v_{\boldsymbol{y}} \\ \dot{\boldsymbol{z}} = v_{\boldsymbol{z}} \\ \dot{\boldsymbol{\psi}} = v_{\boldsymbol{\psi}} \\ \dot{\boldsymbol{\theta}} = v_{\boldsymbol{\theta}} \\ \dot{\boldsymbol{\psi}} = v_{\boldsymbol{\varphi}} \\ \dot{\boldsymbol{\psi}} = \frac{u}{m} f_7(\boldsymbol{\psi}, \boldsymbol{\theta}, \boldsymbol{\varphi}) \\ \dot{\boldsymbol{v}}_{\boldsymbol{y}} = \frac{u}{m} f_8(\boldsymbol{\psi}, \boldsymbol{\theta}, \boldsymbol{\varphi}) \\ \dot{\boldsymbol{v}}_{\boldsymbol{z}} = \frac{u}{m} f_9(\boldsymbol{\theta}, \boldsymbol{\varphi}) - g \\ \dot{\boldsymbol{\psi}}_{\boldsymbol{\theta}} = \tau_{\boldsymbol{\psi}} \\ \dot{\boldsymbol{\psi}}_{\boldsymbol{\theta}} = \tau_{\boldsymbol{\theta}} \\ \dot{\boldsymbol{\psi}}_{\boldsymbol{\varphi}} = \tau_{\boldsymbol{\varphi}} \end{cases}$$

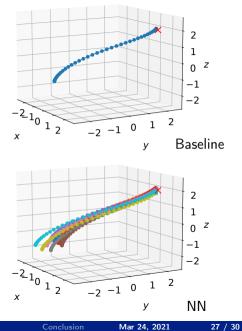


¹⁴Carrillo et al. "Modeling the Quad-Rotor Mini-Rotorcraft". 2013.

Background	Formulation	Neural Networks	Results	Conclusion	Mar 24, 2021	26 / 30

Quadcopter Comparison with Baseline





Review

- Want to solve
 - High-Dimensional Control Problems
 - Semi-Globally
- Combine Pontryagin Maximum Principle and Hamilton-Jacobi-Bellman approaches
- \bullet Parameterize the value function Φ with a neural network
- Solve trajectory problem in 150 dimensions
- Solve quadcopter problem with complicated dynamics
- Demonstrate shock-robustness

Conclusions

- Parameterizing Φ
 ⇒ extrapolation capabilities
- HJB penalizers improve training
- Lagrangian coordinates (no grids) help scalability

DO, L Nurbekyan, X Li, S Wu Fung, S Osher, L Ruthotto A Neural Network Approach Applied to Multi-Agent Optimal Control 2021 European Control Conference arXiv:2011.04757, 2020

Coming Soon:

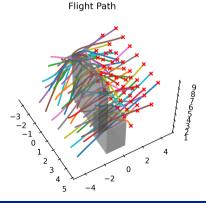
DO, L Nurbekyan, X Li, S Wu Fung, S Osher, L Ruthotto A Neural Network Approach for High-Dimensional Optimal Control

Code: github.com/donken/NeuralOC Simulations: imgur.com/a/eWr6sUb

• More rigorous experiments with many 12-d quadcopters

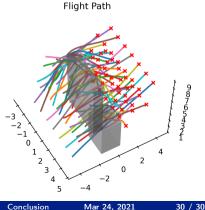
Future Work

- Deployment on actual quadcopters
- Combination with existing methods and sensors



Future Work

- More rigorous experiments with many 12-d quadcopters
- Deployment on actual guadcopters
- Combination with existing methods and sensors



References I

- Bellman, Richard (1957). *Dynamic Programming*. Princeton University Press, Princeton, N. J., pp. xxv+342.
- Carrillo, Luis Rodolfo García et al. (2013). "Modeling the Quad-Rotor Mini-Rotorcraft". In: *Quad Rotorcraft Control.* Springer, pp. 23–34.
- Fleming, Wendell H. and H. Mete Soner (2006). Controlled Markov Processes and Viscosity Solutions. Second. Vol. 25. Stochastic Modelling and Applied Probability. Springer, New York, pp. xviii+429. ISBN: 978-0387-260457; 0-387-26045-5.
- Gholaminejad, Amir, Kurt Keutzer, and George Biros (2019). "ANODE: Unconditionally Accurate Memory-Efficient Gradients for Neural ODEs". In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 730–736.

He, Kaiming et al. (2016). "Deep Residual Learning for Image Recognition". In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778.
Hönig, Wolfgang et al. (2018). "Trajectory Planning for Quadrotor Swarms". In: IEEE Transactions on Robotics 34.4, pp. 856–869.

References II

- Kingma, Diederik P. and Jimmy Ba (2015). "Adam: A Method for Stochastic Optimization". In: International Conference on Learning Representations (ICLR).
- Mylvaganam, Thulasi, Mario Sassano, and Alessandro Astolfi (2017). "A Differential Game Approach to Multi-Agent Collision Avoidance". In: *IEEE Transactions on Automatic Control* 62.8, pp. 4229–4235.
- Nocedal, Jorge and Stephen Wright (2006). *Numerical Optimization*. Springer Science & Business Media.
- Onken, Derek and Lars Ruthotto (2020). "Discretize-Optimize vs. Optimize-Discretize for Time-Series Regression and Continuous Normalizing Flows". In: arXiv:2005.13420.
 Onken, Derek et al. (2020). "OT-Flow: Fast and Accurate Continuous Normalizing Flows via Optimal Transport". In: AAAI.
- Pontryagin, L. S. et al. (1962). The Mathematical Theory of Optimal Processes. Translated by K. N. Trirogoff; edited by L. W. Neustadt. Interscience Publishers John Wiley & Sons, Inc. New York-London, pp. viii+360.

Yang, Liu and George Em Karniadakis (2020). "Potential Flow Generator with L_2 Optimal Transport Regularity for Generative Models". In: *IEEE Transactions on Neural Networks and Learning Systems*.